基于非均质雷达图谱的沥青路面结构损伤识别技术  被引量:2

Identification Technology of Structural Damages of Asphalt Pavement Based on Heterogenous Ground-Penetrating Radar Mapping

在线阅读下载全文

作  者:洪小刚 张伟光[2] 王浩仰 田宏宝 HONG Xiaogang;ZHANG Weiguang;WANG Haoyang;TIAN Hongbao(Shanxi Highway Engineering Detection Co.,Ltd.,Taiyuan 030008,Shanxi,China;School of Transportation,Southeast University,Nanjing 211189,Jiangsu,China;RoadMainT Co.,Ltd.,Beijing 100095,China;Yunjiayi Technology Co.,Ltd.,Wuhan 430205,Hubei,China)

机构地区:[1]山西高速公路工程检测有限公司,山西太原030008 [2]东南大学交通学院,江苏南京211189 [3]中公高科养护科技股份有限公司,北京100095 [4]云加一科技有限公司,湖北武汉430205

出  处:《重庆交通大学学报(自然科学版)》2024年第4期7-13,共7页Journal of Chongqing Jiaotong University(Natural Science)

基  金:国家重点研发计划项目(2020YFA0714302);国家自然科学基金面上资助项目(52278443);中路高科交通科技集团有限公司交通强国试点项目(JTQG2022-1-3-1)。

摘  要:基于雷达图谱与深度神经网络的沥青路面结构损伤自动辨识方法存在数据量少且种类不均衡的问题,识别准确性与稳定性仍有待提高。提出基于非均质雷达图谱的路面结构损伤识别技术。采用探地雷达采集沥青路面结构裂缝与层间不连续病害,获取实测剖面图;基于时域有限差分法,模拟裂缝与层间不连续在匀质模型中的回波特征,与实测图谱组成数据集1#;基于芯样CT扫描图构建“沥青-集料”二相介质模型,模拟裂缝与层间不连续在二相介质模型中的回波特征,与实测图谱组成数据集2#;采用数据集1#和2#,分别训练YOLO v5深度神经网络。研究结果表明:数据集1#和2#在YOLO v5模型测试集上的m AP@0.5为93.79%与96.33%,证明非均质图谱特征可丰富网络训练样本,并提高深度学习模型识别的准确性。The automatic identification method for asphalt pavement structural damage based on ground penetrating radar(GPR)mapping and deep neural network has the problem of limited data volume and unbalanced distribution of types,and the accuracy and stability of identification still need to be improved.The pavement structural damage identification technology based on heterogeneous GPR mapping was proposed.GPR was used to collect structural cracks and interlayer discontinuous diseases of asphalt pavement,and the measured profile maps was obtained.Based on the time-domain finite difference method,the echo features of cracks and interlayer discontinuities in the homogeneous model were numerically simulated,and combined with the measured maps to form dataset 1#.The"asphalt-aggregate"two-phase medium model was constructed based on the CT scan images of core samples,and the echo features of cracks and interlayer discontinuities in the two-phase medium model were simulated,which was combined the measured maps to form dataset 2#.YOLO v5 deep neural network was trained by dataset 1#and 2#,respectively.The research results show that the m AP@0.5 tested in YOLO v5 model using datasets 1#and 2#are 93.79%and 96.33%,which demonstrates that heterogeneous mapping features can enrich network training samples and improve the identification accuracy of deep learning model.

关 键 词:道路工程 结构裂缝 层间不连续 探地雷达 深度神经网络 

分 类 号:U416.2[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象