Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis  

在线阅读下载全文

作  者:Jingchen Na Hongmei Yu Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 

机构地区:[1]Fuel Cell System and Engineering Laboratory,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Journal of Energy Chemistry》2024年第4期370-382,共13页能源化学(英文版)

基  金:supported by the National Key Research and Development Program of China(2022YFB4002100);the Key Program of the National Natural Science Foundation of China(22090032,22090030)。

摘  要:Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AE

关 键 词:Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques 

分 类 号:TQ116.21[化学工程—无机化工] TQ426

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象