检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rui Wang Wenhua Li Kaili Shen Tao Zhang Xiangke Liao
机构地区:[1]Xiangjiang Laboratory,Changsha 410205,China [2]College of Systems Engineering,National University of Defense Technology,Changsha 410073,China [3]Ant Group Co.,Ltd.,Hangzhou 310000,China [4]College of Computer Science and Technology,NUDT,Changsha 410073,China
出 处:《Tsinghua Science and Technology》2024年第2期343-355,共13页清华大学学报(自然科学版(英文版)
基 金:supported by the Open Project of Xiangjiang Laboratory(No.22XJ02003);the National Natural Science Foundation of China(No.62122093).
摘 要:Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,which may not capture all the features of the data.This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization,termed i-MFEA,which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously,each with a different validity index or distance measure.Therefore,i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers.Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality.The paper also discusses how i-MFEA can address two long-standing issues in time series clustering:the choice of appropriate similarity measure and the number of clusters.
关 键 词:time series clustering evolutionary multi-tasking multifactorial optimization clustering validity index distance measure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48