检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuan Zhou Peng Wang Lei Xiang Haofeng Zhang
机构地区:[1]School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
出 处:《Tsinghua Science and Technology》2024年第2期469-480,共12页清华大学学报(自然科学版(英文版)
基 金:supported by the National Natural Science Foundation of China(No.61872187).
摘 要:Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)framework.However,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image distribution.Moreover,the multistage generation strategy results in complex T2I applications.Therefore,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation capacity.Experimental results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
关 键 词:text-to-image(T2I) feature-grounded single-stage generation Generative Adversarial Network(GAN)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249