检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷旭鹏 杨健[2] 徐孟怀 朱江[1] 龚旻[2] LEI Xupeng;YANG Jian;XU Menghuai;ZHU Jiang;GONG Min(Ocean College,Zhejiang University,Zhoushan 316021,China;China Academy of Launch Vehicle Technology,Beijing 100076,China)
机构地区:[1]浙江大学海洋学院,舟山316021 [2]中国运载火箭技术研究院,北京100076
出 处:《清华大学学报(自然科学版)》2024年第4期700-711,共12页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金项目(62371420,61901415);浙江省自然科学基金项目(LY22F010009)。
摘 要:信号/参数经过线性变换,再经过逐位非线性变换得到测量值的过程可以抽象为广义线性模型。广义近似消息传递算法是处理广义线性模型的一种Bayes方法,通过引入信号的稀疏先验分布,利用似然函数和先验分布得到后验均值和后验方差。然而,当测量矩阵的元素不服从次Gauss分布时,广义近似消息传递算法性能会急剧恶化。通过奇异值分解,广义酉变换近似消息传递算法消除了测量矩阵的相关性,在包括相关测量矩阵的各类测量矩阵中表现出更强的鲁棒性。然而,经过足够多次迭代后,广义酉变换近似消息传递算法的信号重构误差在平衡点附近振荡;且随着测量矩阵相关性的增加,广义酉变换近似消息传递算法性能开始恶化。为了进一步提高广义酉变换近似消息传递算法的稳健性、改善算法准确性,该文提出自适应广义酉变换近似消息传递算法。该算法通过构造目标函数并自适应选择合适的步长,使得广义酉变换近似消息传递算法能够收敛到平衡点,从而获得更好的性能。大量的数值仿真实验结果验证了自适应广义酉变换近似消息传递算法的有效性。[Objective]A model involving an unknown signal/parameter undergoing a linear transformation followed by a componentwise nonlinear transformation is known as a generalized linear model(GLM).Estimating an unknown signal/parameter from nonlinear measurements is a fundamental problem in radar and communication fields,including applications such as one-bit radar,one-bit multiple-input multiple-output communication,and phase retrieval.The generalized approximate message passing(GAMP)algorithm is an efficient Bayesian inference technique that deals with GLM.GAMP has low computational complexity,excellent reconstruction performance,and the ability to automatically estimate noise variance and nuisance parameters.However,when the elements of the measurement matrix deviate from the sub-Gaussian distribution,the performance of GAMP considerably degrades.To address this issue,the generalized vector approximate message passing(GVAMP)algorithm is proposed,which employs the vector factor graph representation and expectation propagation to achieve good performance across a broader ensemble of measurement matrices.Moreover,the generalized unitary approximate message passing(GUAMP)algorithm,which employs the singular value decomposition technique for eliminating correlation within the measurement matrix,is introduced.GUAMP demonstrates increased robustness compared to GAMP and GVAMP,particularly under scenarios involving the correlated measurement matrix.However,the signal estimation error of GUAMP may exhibit fluctuations even after a sufficient number of iterations.In addition,as the correlation of the measurement matrix exceeds a threshold,the performance of GUAMP deteriorates compared to the adaptive GAMP(AD-GAMP)algorithm.Therefore,proposing a method to further enhance the robustness and performance of GUAMP is imperative.[Methods]This paper proposes an adaptive GUAMP(AD-GUAMP)algorithm.AD-GUAMP incorporates stepsize selection rules for the approximate message passing(AMP)and GAMP modules of GUAMP,enabling AMP and GAMP algorit
关 键 词:广义线性模型 压缩感知 酉变换近似消息传递 自适应算法
分 类 号:TP393.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49