Medical Image Encryption Based on Josephus Traversing and Hyperchaotic Lorenz System  被引量:1

在线阅读下载全文

作  者:杨娜 张淑霞 白牡丹 李珊珊 YANG Na;ZHANG Shuxia;BAI Mudan;LI Shanshan(School of Information Engineering,Chang'an University,Xi'an 710064,China)

机构地区:[1]School of Information Engineering,Chang'an University,Xi'an 710064,China

出  处:《Journal of Shanghai Jiaotong university(Science)》2024年第1期91-108,共18页上海交通大学学报(英文版)

基  金:the National Natural Science Foundation of China(No.61402051);the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM6076)。

摘  要:This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is used in the scrambling and diffusion stages of the algorithm.Second,in the scrambling process,the image is initially confused by Josephus scrambling,and then the image is further confused by Arnold map.Finally,generated hyperchaos sequence and exclusive OR operation is used for the image to carry on the positive and reverse diffusion to change the pixel value of the image and further hide the effective information of the image.In addition,the information of the plaintext image is used to generate keys used in the algorithm,which increases the ability of resisting plaintext attack.Experimental results and security analysis show that the scheme can effectively hide plaintext image information according to the characteristics of medical images,and is resistant to common types of attacks.In addition,this scheme performs well in the experiments of robustness,which shows that the scheme can solve the problem of image damage in telemedicine.It has a positive significance for the future research.

关 键 词:medical image image encryption Josephus traversing hyperchaotic Lorenz system 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构] R319[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象