动车组检修物料拣选路径优化仿真  

Optimization Simulation of Material Picking Path for EMU Maintenance

在线阅读下载全文

作  者:陈彦 孙鹏 王忠凯 李莉 CHEN Yan;SUN Peng;WANG Zhong-kai;LI Li(Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)

机构地区:[1]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081

出  处:《计算机仿真》2024年第4期114-118,共5页Computer Simulation

基  金:中国国家铁路集团有限公司课题(P2021S005)。

摘  要:动车组检修物料拣选是备料过程的主要耗时环节,拣选路径优化有助于减少拣选时间,提高动车组检修效率。动车组检修物料分批次随机存放在多个储位,即1种物料对应多个储位,现有的拣选路径优化基于1种货物对应1个储位前提,现有方法难以解决该问题。在动车组检修物料仓储布局、物料需求、拣选车最大载量确定的前提下,以拣选路径总长度最短为目标,建立储位选择和路径规划进行整体优化模型,基于模拟退火算法设计求解算法。通过算例验证,与基于就近原则的拣选路径决策方法相比,通过储位选择和拣选路径整体优化,拣选路径能缩短12.5%。The picking of EMU maintenance materials is the main time-consuming link in the material preparation process.The optimization of the picking path helps to reduce the picking time and improve the maintenance efficiency of EMU.The overhaul materials of EMU are randomly stored in multiple storage locations in batches,that is,one material corresponds to multiple storage locations.The existing picking path optimization is based on the premise that one kind of goods corresponds to one storage location.The existing methods make it difficult to solve this problem.On the premise of determining the storage layout,material demand and the maximum load of picking vehicles for EMU maintenance materials,taking the shortest total length of picking path as the goal,the overall optimization model of storage location selection and path planning is established,and the solution algorithm is designed based on simulated annealing algorithm.Through the example verification,compared with the picking path decision-making method based on the proximity principle,through the storage location selection and the overall optimization of the picking path,the picking path can be shortened by 12.5%.

关 键 词:动车组 检修物料 拣选方案 储位选择 拣选路径 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象