检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翁建勋 WENG Jianxun(Jiangmen First Vocational and Technical School,Jiangmen 529000,China)
机构地区:[1]江门市第一职业技术学校,广东江门529000
出 处:《现代信息科技》2024年第7期165-171,共7页Modern Information Technology
摘 要:为降低网络的恶意入侵风险,提出基于贝叶斯决策的交互式网络恶意入侵主动防御模型。采用K-聚类算法识别交互式网络中恶意入侵跳频数据,构建交互式网络恶意入侵节点分布模型;采用基于能量熵增量频域互相关系系数的敏感IMF分量选取算法,保留有效的恶意入侵特征分量。利用贝叶斯决策理念,构建恶意入侵防御模型,最终结果显示:该方法的抗干扰系数和冗余度结果分别在0.10和0.22以下;能够准确分类识别交互式网络中恶意入侵跳频数据;特征分量判定精度均在0.946以上;交互式网络的安全系数均在0.936;网络威胁等级均在2级以下,有效提升了网络的安全性。In order to reduce network malicious intrusion risk,an interactive network malicious intrusion active defense model based on Bayesian Decision Theory is proposed.It uses K-means Clustering Algorithm to identify malicious intrusion frequency hopping data in interactive networks,constructs a distribution model of malicious intrusion nodes in interactive networks,and adopts a sensitive IMF Component Selection Algorithm based on the energy entropy increment frequency domain correlation coefficient to preserve effective malicious intrusion feature components.It uses Bayesian Decision Theory to construct a malicious intrusion defense model,and the final results show that the anti-interference coefficient and redundancy results of this method are below 0.10 and 0.22,respectively.It can accurately classify and identify malicious intrusion frequency hopping data in interactive networks,and the accuracy of feature component determination is above 0.946.The security factors of interactive networks are all 0.936.The network threat levels are all below level 2,effectively improving the security of the network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.249.37