基于多混沌映射算法的图像可逆化加密仿真  

Image Reversible Encryption Simulation Based on Multi-Chaos Mapping Algorithm

在线阅读下载全文

作  者:牛群峰[1] 毛佳琳 王莉[1] NIU Qun-feng;MAO Jia-lin;WANG Li(School of Electrical Engineering,Henan University of Technology,Zhengzhou Henan 450001,China)

机构地区:[1]河南工业大学电气工程学院,河南郑州450001

出  处:《计算机仿真》2024年第3期173-176,199,共5页Computer Simulation

基  金:河南省重大科技专项项目(项目编号:201300210100)。

摘  要:原图像经过对矩阵元素随机打乱可得到加密图像,加密后的图像可以有效防止已知攻击。可逆映射可以高效地实现像素置乱,但由于离散混沌序列的初始条件较为敏感,因此像素扩散置乱难度较大。为此提出基于多混沌映射算法的图像可逆化加密方法,在图像加密过程中,采用扩散置乱和Arnold变换置乱图像,通过Logistic映射系统和Chen系统生成离散混沌序列,置乱后图像中红、绿、蓝三基色分别执行异或运算,从而输出加密图像。在图像解密过程中,分别对扩散置乱、Arnold变换以及图像加密执行逆映射,输出解密图像,完成图像可逆化加密。实验结果表明,所提方法密钥敏感性和原图与解密图像像素值分布更均匀、相邻像素相关性更低,鲁棒性更强。Original image can be encrypted by randomly disrupting the matrix elements.And the encrypted image can prevent known attacks.Reversible mapping can achieve pixel scrambling.However,the initial conditions of discrete chaotic sequences are sensitive.Therefore,a method of reversible encryption for images based on a multichaotic mapping algorithm was presented.In the process of image encryption,diffusion scrambling and Arnold transform were used to shuffle the images,and then a discrete chaotic sequence was generated through the logistic mapping system and Chen system.After scrambling,XOR operation was applied to the three primary colors,red,green and blue in images respectively,and thus to output the encrypted image.In the process of image decryption,inverse mapping was performed on diffusion scrambling,Arnold transforms and image encryption respectively.Finally,the decrypted image was output to complete the reversible encryption.Experimental results show that compared with the original image,the pixel value distribution of the decrypted image of the proposed method is more uniform.Meanwhile,the correlation between adjacent pixels is lower,and the robustness is stronger.

关 键 词:多混沌映射 图像可逆化加密 映射系统 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象