Quantized autoencoder(QAE)intrusion detection system for anomaly detection in resource-constrained loT devices using RT-loT2022 dataset  被引量:1

在线阅读下载全文

作  者:B S Sharmila Rohini Nagapadma 

机构地区:[1]Depatment of Electronics and Communication Engineering,The National Institute of Engineering,Mysore,Karnataka 570008,India

出  处:《Cybersecurity》2024年第2期13-27,共15页网络空间安全科学与技术(英文)

摘  要:In recent years,many researchers focused on unsupervised learning for network anomaly detection in edge devices to identify attacks.The deployment of the unsupervised autoencoder model is computationally expensive in resource-constrained edge devices.This study proposes quantized autoencoder(QAE)model for intrusion detection systems to detect anomalies.QAE is an optimization model derived from autoencoders that incorporate pruning,clustering,and integer quantization techniques.Quantized autoencoder uint8(QAE-u8)and quantized autoencoder float16(QAE-f16)are two variants of QAE built to deploy computationally expensive Al models into Edge devices.First,we have generated a Real-Time Internet of Things 2022 dataset for normal and attack traffic.The autoencoder model operates on normal traffic during the training phase.The same model is then used to reconstruct anomaly traffic under the assumption that the reconstruction error(RE)of the anomaly will be high,which helps to identify the attacks.Furthermore,we study the performance of the autoencoders,QAE-u8,and QAE-f16 using accuracy,precision,recall,and F1 score through an extensive experimental study.We showed that QAE-u8 outperforms all other models with a reduction of 70.01%in average memory utilization,92.23%in memory size compression,and 27.94%in peak CPU utilization.Thus,the proposed QAE-u8 model is more suitable for deployment on resource-constrained IoT edge devices.

关 键 词:IoT CONSTRAINED system 

分 类 号:TN915[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象