基于Python多项式回归的钻孔瓦斯压力预测与应用  被引量:1

Prediction and application of borehole gas pressure based on Python polynomial regression

在线阅读下载全文

作  者:谢凯熙 王声远 齐黎明[1] Xie Kaixi;Wang Shengyuan;Qi Liming(School of Safety Engineering,North China Institute of Science and Technology,Beijing 101601,China)

机构地区:[1]华北科技学院安全工程学院,北京东燕郊101601

出  处:《煤炭与化工》2024年第3期103-106,111,共5页Coal and Chemical Industry

摘  要:针对瓦斯测压过程中读取数据误差大、操作不方便和周期性长等问题,研发了一套远程、实时在线监测装置,并利用Python多项式回归对数据进行分析预测。研究结果显示,利用传感器、网络交换机和数据监测系统实现了钻孔瓦斯压力远程、精准、实时在线监测,同时相比传统的一元线性回归方法,Python多项式回归方法对数据的拟合度更高预测更准确,有效缩短了测压时间。Aiming at the problems of large reading data error,inconvenient operation and long periodicity in the process of gas pressure measurement,a set of remote and real-time online monitoring device is developed,and Python polynomial regression is used to analyze and predict the data.The research results show that the remote,accurate and real-time online monitoring of borehole gas pressure is realized by using sensors,network switches and data monitoring system.At the same time,compared with the traditional linear regression method,Python polynomial regression method has higher fitting degree and more accurate prediction of data,which effectively shortens the pressure measurement time.

关 键 词:瓦斯测压 在线监测装置 Python多项式回归 预测 缩短测压时间 

分 类 号:TD712[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象