检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏子栋[1] 黄寻 段昊泓 邵明飞 李仁贵[4] 张金利[5] 李灿[4] 段雪 Zidong Wei;Xun Huang;Haohong Duan;Mingfei Shao;Rengui Li;Jinli Zhang;Can Li;Xue Duan(School of Chemistry and Chemical Engineering,Chongqing University,Chongqing 400044,China;Department of Chemistry,Tsinghua University,Beijing 100084,China;School of Chemistry,Beijing University of Chemical Technology,Beijing 100029,China;Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,Liaoning,China;School of Chemical Engineering,Tianjin University,Tianjin 300072,China)
机构地区:[1]重庆大学化学化工学院,重庆400044 [2]清华大学化学系,北京100084 [3]北京化工大学化学学院,北京100029 [4]中国科学院大连化学物理研究所,辽宁大连116023 [5]天津大学化工学院,天津300072
出 处:《Chinese Journal of Catalysis》2024年第3期1-6,共6页催化学报(英文)
基 金:国家自然科学基金(22342016,22090030,22325805,22178033).
摘 要:利用可再生能源实现物质和能量的转化,是发展节能减排技术、实现双碳目标的重要手段.有机电合成是一种温和、清洁、高效的物质合成方法,可以有效解决传统化工过程的高能耗和高污染问题.将电解水制氢与有机电合成耦合,利用水分解产生的活性氧/氢直接氧化/还原有机物,不仅有助于降低能耗,还可以生产高附加值有机化工产品,是提高电能利用效率、降低生产成本的有效方案.然而,尽管这种方法具有诸多优势,其工业化应用仍面临一系列难题.本文回顾了电化学合成的发展历史,探讨了氢能时代为电化学合成带来的发展机遇.同时,分析了将电化学合成与电解水耦合所面临的挑战以及未来发展方向.首先,应当慎重选择与电解水制氢耦合的阳极反应体系,其氧化产物不但要具有比反应物更高的经济价值,而且要有较大的市场需求量,以匹配制氢规模.其次,虽然在热力学上有机物氧化比析氧更容易发生,但在动力学及传质方面,有机物氧化可能存在劣势,因此必须开发适用于工业制氢电流密度(500‒2000 mA cm^(‒2))的有机物氧化电极材料.第三,阳极有机产物选择性不仅影响反应物的利用率,而且决定后续分离纯化成本,需要通过调控活性氢/氧及有机物表面的竞争吸附等手段,提高阳极目标产物选择性及法拉第效率.第四,隔膜是分离两极反应物料、防止副反应发生的重要部件.然而,现有的阴、氧离子交换膜的耐有机物腐蚀性能差,需要开发适用于电解耦合体系的、具有高离子传导能力且性能稳定的新型隔膜材料.最后,当有机物氧化与电解水耦合后,产物的分离复杂程度增加,需要将精馏、萃取、膜分离等手段与电化学反应相结合,以提升电解过程效率.综上,本文讨论了电化学合成耦合可再生能源制氢的若干技术难题,为未来电合成与氢能技术共同发展提供新思路.Organic electromechanical synthesis is an eco-friendly and efficient method for material synthesis,effectively addressing the high energy consumption and pollution problems in the traditional chemical industry.By combining hydrogen production from water electrolysis with organic electromechanical synthesis,the reactive oxygen/hydrogen from water hydrolysis can be utilized to oxidize/reduce organic compounds,reducing energy consumption and producing valuable organic products.However,this strategy still faces challenges when implemented in the industry.This paper addresses major technical challenges in the field,providing new insights for future advancements.Firstly,when selecting anode reactions for hydrogen production,it is important to consider the value and market demand of the oxidation product to match the production scale.Secondly,the development of efficient electrocatalysts and electrodes is required to enhance the oxidation kinetics and mass transfer of organics at the current density levels of industrial hydrogen production(500‒2000 mA cm^(‒2)).Thirdly,it is essential to improve the selectivity and Faraday efficiency of the anode target product to lower the cost of subsequent separation and purification.Fourthly,existing anion and oxygen ion exchange membranes lack corrosion resistance to organic matter,and new separator materials with high ion conductivity and stability are crucial for the electrolytic coupling system.Finally,when combining organic oxidation and water electrolysis,the complexity of product separation increases,and it is recommended to integrate distillation,extraction,membrane separation,and electrochemical reactions to improve process efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44