突发事件网络舆情传播关键影响因素识别研究  被引量:1

Identifying the key influencing factors of network public opinion transmission in emergencies

在线阅读下载全文

作  者:赵乐新 骆正山[1] 张志霞[1] ZHAO Lexin;LUO Zhengshan;ZHANG Zhixia(School of Management,Xi'an University of Architecture and Technology,Xi'an,710055,China)

机构地区:[1]西安建筑科技大学管理学院,陕西西安710055

出  处:《海南大学学报(人文社会科学版)》2024年第3期95-105,共11页Journal of Hainan University (Humanities & Social Sciences)

基  金:陕西省自然科学基金面上项目(2022JM-416);陕西省教育厅人文社会科学项目(2022R114)。

摘  要:为提高应对突发事件网络舆情传播的处理效率,基于网络可视化方法结合复杂网络理论构建网络舆情影响因素识别模型。该模型基于系统建模理论进行致因因素辨识,依据各影响因素的关联关系,运用网络建模技术形成可视化的致因网络,结合不同的节点失效方案,对致因网络进行失效仿真模拟分析,通过网络结构变化程度识别出网络舆情关键影响因素。网络舆情致因网络具有典型的无标度网络特性,基于节点介数和紧密中心度排序的失效模式对致因网络结构变化程度影响最为显著,其中事件曝光时间、政府关注度、政府发文量、媒体发文量、网民关注程度和网民讨论程度为关键影响因素。In order to improve the processing efficiency of network public opinion transmission in response to emergencies,the identification model of influencing factors of network public opinion is constructed based on the network visualization method and complex network theory.Based on the system modeling theory,the model can identify the causal factors.According to the correlation of various influencing factors,a visual causal network is formed by using the network modeling technology.Along with the different node failure schemes,the failure simulation analysis of the causal network is carried out.Further,the key influencing factors of network public opinion can be identified through the change degree of network structure.The caus-al network related to Internet public opinion has the typical characteristics of scale-free network.The failure modes based on the ranking of node betweenness and closeness centrality have the most significant influence on the change degree of the causal network structure.The event exposure time,government attention,govern-ment documents,media documents,netizen attention and netizen discussion are the key influencing factors.

关 键 词:突发事件 网络舆情 网络可视化 复杂网络 致因分析 

分 类 号:G206.3[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象