无线传感器网络中定位节点技术的改进与实验研究  

Improvement and Experimental Research on Localization Node Technology in Wireless Sensor Networks

在线阅读下载全文

作  者:李婧[1] LI Jing(Shanxi Vocational and Technical College,Taiyuan,Shanxi 030006,China)

机构地区:[1]山西职业技术学院,山西太原030006

出  处:《自动化应用》2024年第7期180-182,共3页Automation Application

摘  要:定位节点技术中,SSO算法的搜索能力不平衡、收敛精度低,为此,提出一种混合策略的群居蜘蛛优化GSSO算法。经试验,与SSO算法相比,GSSO算法的最差、最优、平均覆盖率分别提升8.48%、7.81%、7.91%;与wDESSO算法相比,GSSO算法的覆盖率分别提升2.81%、2.59%、2.92%,这表明GSSO算法具有很好的寻优效果,且GSSO算法的平均WSN覆盖率更高。另外,基于GSSO的DV-Hop算法,未知节点的最小、最大定位误差分别为0.34m、13.20 m,定位误差小,定位精确度高。In node localization technology,the search ability of SSO algorithm is imbalanced and the convergence accuracy is low.Therefore,a mixed strategy social spider optimization GSSO algorithm is proposed.Through experiments,compared with SSO algorithm,GSSO algorithm has improved the worst,best,and average coverage by 8.48%,7.81%,and 7.91%,respectively.and compared with the wDESSO algorithm,the coverage of the GSSO algorithm has increased by 2.81%,2.59%,and 2.92%,respectively.This indicates that the GSSO algorithm has good optimization performance,and the average WSN coverage of the GSSO algorithm is higher.In addition,based on the DV Hop algorithm of GSSO,the minimum and maximum positioning errors of unknown nodes are 0.34 m and 13.20 m,respectively,with small positioning errors and high positioning accuracy.

关 键 词:无线传感器网络 SSO算法 GSSO算法 定位节点 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象