基于三维原子范数的机载MIMO雷达STAP算法  

STAP Algorithm for Airborne MIMO Radar Based on Three⁃Dimensional Atomic Norm Minimization

在线阅读下载全文

作  者:来燃 李港 董子正 王穗 章涛[1] LAI Ran;LI Gang;DONG Zizheng;WANG Sui;ZHANG Tao(Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China;Tianjin Branch,Beijing Aircraft Maintenance Engineering Co Ltd,Tianjin 300300,China)

机构地区:[1]中国民航大学天津市智能信号与图像处理重点实验室,天津300300 [2]北京飞机维修工程有限公司天津分公司,天津300300

出  处:《雷达科学与技术》2024年第2期218-225,230,共9页Radar Science and Technology

基  金:天津市教委科研计划项目(No.2021KJ048)。

摘  要:针对机载多输入多输出(MIMO)雷达空时自适应处理(STAP)使用稀疏恢复技术时存在的格点失配问题,提出了一种基于三维原子范数的机载MIMO雷达STAP算法。该方法利用杂波空时谱在角度-多普勒域上固有的稀疏性,根据低秩矩阵恢复理论构造了基于三维连续原子集的MIMO雷达杂波信号稀疏恢复模型,避免了稀疏恢复中的格点失配问题,实现了杂波空时谱的高分辨率估计,有效提高了机载MIMO雷达STAP杂波抑制性能。仿真实验表明,本文方法在存在格点失配情况下的MIMO雷达STAP处理性能优于已有的基于字典网格的稀疏恢复方法和二维原子范数方法。Aiming at the problem of grid mismatch in space⁃time adaptive processing(STAP)of airborne multipleinput multiple⁃output(MIMO)radar using sparse recovery technology,a STAP algorithm for airborne MIMO radar based on three⁃dimensional atomic norm minimization is proposed.According to the low rank matrix recovery theory,a three⁃dimensional continuous atomic set based sparse recovery model of MIMO clutter signal is constructed,which utilizes the inherent sparsity of clutter space⁃time spectrum in the angle⁃Doppler domain.The proposed method can avoid grid mismatch problem in the sparse recovery,which obtaines the clutter spectrum with high accuracy and effectively improves the clutter suppression performance of airborne MIMO radar STAP.Simulation results demonstrate that compared with existing dictionary⁃grid⁃based sparse recovery method and two⁃dimensional atomic norm minimization method,the proposed method provides better STAP processing performance in terms of SINR loss under the grid mismatch condition.

关 键 词:机载MIMO雷达 空时自适应处理 稀疏恢复 格点失配 原子范数 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象