睡眠期间肠鸣音信号的鼾声噪声去除方法  

Snoring noise removal method for bowel sound signal during sleep

在线阅读下载全文

作  者:王国静 王卫东[2,3] 刘洪运[2,3] WANG Guojing;WANG Weidong;LIU Hongyun(School of Biological Science and Medical Engineering,Beihang University,Beijing 100191,P.R.China;Medical Innovation Research Division,Chinese PLA General Hospital,Beijing 100853,P.R.China;Key Laboratory of Biomedical Engineering and Translational Medicine,Ministry of Industry and Information Technology,Chinese PLA General Hospital,Beijing 100853,P.R.China)

机构地区:[1]北京航空航天大学生物与医学工程学院,北京100191 [2]中国人民解放军总医院医学创新研究部,北京100853 [3]中国人民解放军总医院工业和信息化部生物医学工程与转化医学重点实验室,北京100853

出  处:《生物医学工程学杂志》2024年第2期288-294,共7页Journal of Biomedical Engineering

基  金:科技创新2030-“新一代人工智能”项目(2020AAA0105800)。

摘  要:肠鸣音监测是评估睡眠期间肠动力的重要方法,但会受到鼾声噪声的严重影响。本文将自适应噪声的完备集合经验模态分解(CEEMDAN)方法用于睡眠期间肠鸣音的鼾声噪声去除。具体地,先对带噪肠鸣音进行带通滤波,然后使用CEEMDAN方法分解,最后选择适当的分量重构纯净肠鸣音。半模拟数据和真实数据验证表明,与普通的经验模式分解和小波去噪方法相比,CEEMDAN方法能更有效地去除鼾声噪声。CEEMDAN方法用于睡眠期间肠鸣音鼾声噪声去除,可为肠鸣音用于睡眠期间肠动力评估奠定重要基础。Monitoring of bowel sounds is an important method to assess bowel motility during sleep,but it is seriously affected by snoring noise.In this paper,the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method was applied to remove snoring noise from bowel sounds during sleep.Specifically,the noisy bowel sounds were first band-pass filtered,then decomposed by the CEEMDAN method,and finally the appropriate components were selected to reconstruct the pure bowel sounds.The results of semi-simulated and real data showed that the CEEMDAN method was better than empirical mode decomposition and wavelet denoising method.The CEEMDAN method is used to remove snoring noise from bowel sounds during sleep,which lays an important foundation for using bowel sounds to assess the intestinal motility during sleep.

关 键 词:肠鸣音 鼾声 自适应噪声的完备集合经验模态分解 去噪 

分 类 号:TN912.3[电子电信—通信与信息系统] R318[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象