检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:安树怀 刘一鸿 李锴绩 王琦 赵兵 康忠健[2] AN Shuhuai;LIU Yihong;LI Kaiji;WANG Qi;ZHAO Bing;KANG Zhongjian(State Grid Shandong Electric Power Company Qingdao Power Company,Qingdao 266001,China;China University of Petroleum(East China),Qingdao 266580,China;State Grid Shandong Electric Power Company Zibo Power Company,Zibo 255000,China;State Grid China Electric Power Research Institute,Beijing 100192,China)
机构地区:[1]国网山东电力公司青岛供电公司,山东青岛266001 [2]中国石油大学(华东)石大山能新能源学院,山东青岛266580 [3]国网山东电力公司淄博供电公司,山东淄博255000 [4]国网中国电力科学研究院有限公司,北京100192
出 处:《电气应用》2024年第4期56-62,共7页Electrotechnical Application
基 金:国家自然科学基金(5224172);国家电网有限公司总部科技项目资助(SGJS0000DKJS1900497)。
摘 要:随着电网规模越来越大,结构越来越复杂,供电可靠性的要求越来越高,通过现场试验的方式获取电力负荷的动态特性变得十分困难。提出了基于统计综合法的思想,运用电力系统仿真软件,通过仿真计算的方式得出对应电力负荷的动态特性。为了获得馈线负荷构成比例识别所需的负荷数据库,建立了包含变频空调负荷、分布式光伏负荷、感应电机负荷以及静态负荷的电网模型,通过设置电压跌落,得到不同负荷情况馈线功率数据,建立馈线负荷数据库,运用基于特征线性调制的改进深度学习网络的方法挖掘负荷节点或馈线功率变化的特征,并对负荷构成进行识别。结果经过训练后,与传统BP神经网络进行对比,识别准确率达到99%以上,部分负荷可以达到99.6%以上,有着较高的识别准确度。With the increasing scale of power grid,the structure is more and more complex,and the requirement of power supply reliability is higher and higher,it is very difficult to obtain the dynamic characteristics of power load through field test.Based on the idea of statistical synthesis method,this paper uses the power system simulation software to obtain the dynamic characteristics of the corresponding power load through simulation calculation.In order to obtain the load database required for the identification of feeder load composition proportion,the power grid model including variable frequency air conditioning load,distributed photovoltaic load,induction motor load and static load is established as shown in the figure.By setting voltage drop,the feeder power data under different load conditions are obtained,and the feeder load database is established,The improved deep learning network method based on feature linear modulation is used to mine the characteristics of load node or feeder power change,and identify the load composition.Following training,the results were compared to those of the traditional BP neural network,revealing a recognition accuracy surpassing 99%.Additionally,certain loads exhibited accuracy exceeding 99.6%,thus indicating a significantly elevated level of recognition precision.
关 键 词:参数识别 馈线负荷构成识别 深度学习网络 特征线性调制
分 类 号:TM714[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.37.184