检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:花晓宏 郭玉良 阎天民 李帅 王新成 江玉海[1,2,3] HUA Xiaohong;GUO Yuliang;YAN Tianmin;LI Shuai;WANG Xincheng;JIANG Yuhai(Center for Research and Interdisciplinary,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China;Argonne National Laboratory,Lemont 60439,USA)
机构地区:[1]中国科学院上海高等研究院基础交叉研究中心,上海201210 [2]上海科技大学物质科学与技术学院,上海201210 [3]中国科学院大学,北京100049 [4]阿贡国家实验室,美国雷蒙特60439
出 处:《光子学报》2024年第4期232-243,共12页Acta Photonica Sinica
基 金:国家自然科学基金(Nos.11827806,12174284);国家重点基础研究发展计划(No.2022YFA1604302)。
摘 要:模拟仿真了速度成像谱仪中解离电子/离子飞行运动轨迹,获得电子/离子动量三维分布的真实图像,针对时间戳相机Tpx3Cam在动量分布探测成像中存在的团簇效应问题,发展了适用于高计数率情况下的中心算法。仿真结果显示,提出的中心算法可以减少约一个数量级的数据容量,并让单像素位置精度提高到0.1像素,实现了粒子动量分布的超分辨位置成像。模拟ns态电子电离和N_(2)分子(1,1)通道库伦爆炸实验,发现中心算法能够使电子平行于探测器平面的动量分辨提升30%;使库伦爆炸产生的N^(+)飞行时间谱分辨提升80%。同时,在具有背景气体干扰情况下,对CO分子库伦爆炸产物离子进行半径协方差分析,提出的中心算法成功观测到C^(+)和O^(+)的关联。The time-stamped camera Tpx3Cam is a cutting-edge tool for exploring atomic and molecular dynamics,enabling the detection of photons,electrons,and ions in three dimensions with an impressive time resolution of up to 1.6 ns.Despite its advantages,Tpx3Cam faces inherent challenges,such as the cluster effect.This effect compromises both the temporal and spatial resolution of data acquisition while significantly increasing data capacity,thereby posing obstacles for subsequent data processing.To counter this,a method,known as the centroiding algorithm,is crucial to mitigate the cluster effect's impact,enhance Tpx3Cam's imaging resolution,and reduce data capacity.The current centroiding algorithm efficiently eliminates unnecessary derived signals within clusters and accurately locates their centers by analyzing their distributions,achieving subpixel super-resolution in position.However,existing centroiding algorithms are limited to handling low counting rates,specifically dealing with isolated clusters,lacking the capability to distinguish connected clusters in position.Under high counting rates,closely situated clusters could emerge within a short time.Consequently,traditional centroiding algorithms is inadequate for declustering in such scenarios.A new centroiding algorithm has been developed to address the cluster effect encountered during high counting rate imaging processes.Based on the existing centroiding algorithm,this new method significantly enhances the capability to distinguish clusters in time.It accurately identifies each independent cluster within extensive datasets,effectively declustering them.It results in a data capacity reduction by approximately one order of magnitude,while achieving subpixel super-resolution of the cluster center location.A position resolution of about 0.1 pixel could be achieved with the application of this new algorithm for each signal.Additionally,instead of employing Gaussian fitting,we utilize the weighted average method to determine cluster centers.This choice is supported b
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7