考虑管制员负荷的空中交通流量动态短期预测  被引量:1

Dynamics short-term prediction of air traffic flow considering controller workload

在线阅读下载全文

作  者:朱承元[1] 田睿 ZHU Chengyuan;TIAN Rui(College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学空中交通管理学院,天津300300

出  处:《飞行力学》2024年第2期82-88,94,共8页Flight Dynamics

基  金:国家自然科学基金委与中国民用航空局联合基金资助(U2133207);中央高校基本科研业务费项目资助(3122022055);中国民航大学研究生科研创新项目资助(2022YJS090)。

摘  要:常用的空中交通流量预测方法忽视了因管制员工作负荷对航班流量实施控制引起的流量变化等动态因素,导致流量预测不够合理,为此,提出了考虑管制员负荷的空中交通流量动态短期预测方法。考虑到管制员负荷难以量化,引入与管制员负荷正相关的管制通信时间变量,以历史统计数据为依据,建立管制通信时间与航班流量的拟合模型;建立了航班流量和管制通信时间的向量自回归模型;建立了航班流量与管制通信时间的向量误差修正模型(VECM)并进行了2 h的短期流量预测,并与采用单变量ARIMA的预测结果进行比较与分析。结果表明VECM比ARIMA的预测结果准确度提升了6.88%,证明了所提出的预测方法合理可行,为空中交通流量动态短期预测提供了新的方法和思路。The commonly used air traffic flow prediction methods neglect the dynamic factors such as the workload of controllers that affect flight flow control,leading to unreasonable flow prediction.Therefore,a dynamic short-term prediction method of air traffic flow was proposed considering controller workload.The controller workload is difficult to quantify,so that the control communication time variable positively correlated with the controller workload was introduced.Based on historical statistical data,a fitting model of control communication time and flight flow was established.A vector autoregression model of flight flow and control communication time was established.A vector error correction model(VECM)of flight flow and control communication time was established,and a short-term flow prediction for 2 hours was carried out.The prediction results were compared and analyzed with the prediction results of single variable ARIMA.The results show that the accuracy of VECM is 6.88%higher than that of ARIMA,which prove that the proposed prediction method is reasonable and feasible,and provide new methods and ideas for dynamic short-term prediction of air traffic flow.

关 键 词:动态短期流量预测 管制员工作负荷 向量自回归模型 向量误差修正模型 

分 类 号:V355[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象