检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖辉 范小宁[1] XIAO Hui;FAN Xiao-ning(Department of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,Shanxi,China)
机构地区:[1]太原科技大学机械工程学院,山西太原030024
出 处:《机械研究与应用》2024年第2期52-55,共4页Mechanical Research & Application
摘 要:为解决有限元模型和群智能算法相结合的起重机结构优化计算的计算成本昂贵的问题,该文基于AL-Kriging代理模型和粒子群智能优化算法构建了起重机主梁优化方法,在该方法中通过EFF学习函数选择优化所需的有效样本点,从而用较少的高保真计算样本构建出满足精度要求的代理模型,再通过PSO算法以及所构建好的代理模型完成结构优化。通过工程案例验证证明,在取得同样计算结果的情况下,与基于静态Kriging模型相比,该方法的优化时间节省了70%,调用样本数仅为静态代理模型的27%,证明了所构建的优化方法是可行和有效的。In order to solve the expensive calculation cost of crane structure optimization combining finite element model with swarm intelligence algorithm,a crane girder optimization method is constructed in this paper based on active learning Kriging surrogate model and particle swarm intelligence optimization algorithm.In this method,the effective sample points required for optimization is selected by the EFF active learning function,so as to construct a surrogate model that meets the accuracy requirements with as fewer high-fidelity samples as possible.Finally,the structural optimization is completed based on the constructed surrogate model through the particle swarm optimization algorithm.Through the engineering case,under the condition of obtaining the same optimization results,the optimization cost time could be saved by about 70% compared with the static Kriging surrogate model,the number of call samples is only 27% of the static surrogate model,which verifies the feasibility and effectiveness of the established optimization method.
关 键 词:起重机主梁 Kriging代理模型 EFF学习函数 智能优化
分 类 号:TH122[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7