Construction of Optimal Mixed-Level Uniform Designs  

在线阅读下载全文

作  者:CHATTERJEE Kashinath LIU Min-Qian QIN Hong YANG Liuqing 

机构地区:[1]Department of Population Health Sciences,Division of Biostatistics and Data Science,Augusta University,GA 30912,USA [2]NITFID,LPMC&KLMDASR,School of Statistics and Data Science,Nankai University,Tianjin 300071,China [3]School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,China

出  处:《Journal of Systems Science & Complexity》2024年第2期841-862,共22页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.12131001,12226343,12371260,and 12371261;National Ten Thousand Talents Program of China;the 111 Project under Grant No.B20016.

摘  要:The theory of uniform design has received increasing interest because of its wide application in the field of computer experiments.The generalized discrete discrepancy is proposed to evaluate the uniformity of the mixed-level factorial design.In this paper,the authors give a lower bound of the generalized discrete discrepancy and provide some construction methods of optimal mixed-level uniform designs which can achieve this lower bound.These methods are all deterministic construction methods which can avoid the complexity of stochastic algorithms.Both saturated mixed-level uniform designs and supersaturated mixed-level uniform designs can be obtained with these methods.Moreover,the resulting designs are also χ^(2)-optimal and minimum moment aberration designs.

关 键 词:Generalized discrete discrepancy Hadamard matrix mixed-level design orthogonal array supersaturated design 

分 类 号:O212.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象