空间偏移拉曼光谱分析技术及其在食品次表层检测中的应用  被引量:2

Spatially Offset Raman Spectroscopy Analysis Technology and Application in Food Subsurface Detection

在线阅读下载全文

作  者:刘振方 黄敏 朱启兵 赵鑫 闫胜琪 LIU Zhen-fang;HUANG Min;ZHU Qi-bing;ZHAO Xin;YAN Sheng-qi(Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi 214122,China)

机构地区:[1]江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122

出  处:《光谱学与光谱分析》2024年第5期1201-1208,共8页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(61775086,61772240)资助。

摘  要:空间偏移拉曼光谱(SORS)是一种应用于浑浊/分层介质深层无损检测的新型拉曼光谱分析技术。分层物质不同深度的拉曼信号随传输距离增加对探测器的贡献产生规律性变化,SORS技术通过采集偏移激光入射点不同距离的拉曼光谱,结合最佳偏移距离信号增强、次表层谱峰识别、次表层信号分离等方法降低表层的干扰,获取纯净的次表层物质拉曼信号,然后借助拉曼的分子特异性实现无损的次表层物质定性和定量检测。介绍了空间偏移拉曼光谱技术的基本概念及测量技术,详细阐述了空间偏移拉曼光谱数据的分析方法及该技术在食品次表层检测中的应用,讨论了空间偏移拉曼光谱技术的限制条件并展望了该领域的未来发展。Spatially Offset Raman Spectroscopy(SORS)is a novel Raman spectroscopy technique for deep nondestructive turbid/layered media testing.Raman signals at different depths of layered materials have regular changes that contribute to detectors with the increase of transmission distance.Therefore,the SORS collects Raman spectra of offset laser points at different distances,combines the methods of optimal offset signal enhancement,subsurface spectral peak identification,subsurface signal separation,etc.,to reduce the interference of the surface layer,and obtains pure Raman signals of subsurface materials.Then,the non-destructive qualitative and quantitative detection of subsurface materials is realized by the molecular specificity of Raman.This paper introduces the basic concept and measurement technology of SORS,and the analysis method of SORS and application of the technique in food subsurface inspection are described in detail.Finally,the limitations of SORS are discussed,and the future development of this field is prospected.

关 键 词:空间偏移拉曼光谱 次表层无损检测 食品品质检测 信号识别 信号分离 

分 类 号:O657.37[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象