Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system  

在线阅读下载全文

作  者:Di Liu Qiongya Gu Lizhen Wang 

机构地区:[1]Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi'an,710127,China

出  处:《Communications in Theoretical Physics》2024年第3期70-83,共14页理论物理通讯(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.12271433)。

摘  要:In this paper,two types of fractional nonlinear equations in Caputo sense,time-fractional Newell–Whitehead equation(FNWE)and time-fractional generalized Hirota–Satsuma coupled KdV system(HS-cKdVS),are investigated by means of the q-homotopy analysis method(q-HAM).The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions.Due to the presence of the auxiliary parameter h in this method,just a few terms of the series solution are required in order to obtain better approximation.For the sake of visualization,the numerical results obtained in this paper are graphically displayed with the help of Maple.

关 键 词:fractional Newell-Whitehead equation fractional generalized Hirota-Satsuma coupled KdV system approximate solution q-homotopy analysis method 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象