检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓胜军 陈念年[1] DENG Shengjun;CHEN Niannian(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010
出 处:《计算机工程与应用》2024年第9期228-236,共9页Computer Engineering and Applications
基 金:四川省科技厅重点研发项目(2021YFG0031);四川省省级科研院所科技成果转化项目(22YSZH0021)。
摘 要:基于分割的方法对自然场景中的文本进行像素级预测,大幅度提升了对任意形状文本的检测效果,但是如何有效分离相邻文本仍然是检测中的难题。目前广泛采用的方法是通过缩小文本注释边界得到文本核来分离相邻文本。然而,网络预测文本核时舍弃了文本核外大部分信息,降低了基于分割的文本检测方法的性能。为了解决这个问题,提出了一种文本核重建算法,将文本核的生成放在后处理阶段,通过网络预测的方向场将文本实例向内收缩形成文本核。同时,提出了一种文本核扩展算法用于将文本核恢复为完整的文本实例。实验表明,所提方法在Total-Text(88.66%)、CTW-1500(87.28%)和MSRA-TD500(90.65%)三个数据集上取得了相似或最好的检测性能。Segmentation-based methods approaches for pixel-level text prediction in natural scenes have demonstrated significant improvement in the detection of arbitrary shape text.However,the separation of adjacent text remains a chal�lenge in text detection.One common method for addressing this issue involves the use of text kernels,which are obtained by shrinking the annotation boundaries,to separate adjacent instances.While this approach is effective in certain scenarios,it discards a significant amount of information outside the text kernel,which can degrade the performance of segmentation�based text detection methods.To address this limitation,a text kernel reconstruction algorithm is proposed that postpones the generation of text kernels to the post-processing stage.The proposed approach utilizes the direction field predicted by the network to inwardly contract text instances,resulting in the formation of text kernels.Additionally,a text kernel expan�sion algorithm is proposed to restore full text instances from the resulting text kernels.Experiments on the Total-Text,CTW-1500,and MSRA-TD500 datasets show that the proposed method achieves similar or superior detection perfor�mance compared to the state-of-the-art(88.66%,87.28%,and 90.65%respectively).
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.176