检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈威 张皓亮 高崇阳 Chen Wei;Zhang Haoiang;Gao Chongyang(SINOPEC Nanjing Engineering Co.,Ltd.,Jiang-su,Nanjing,210000)
机构地区:[1]中石化南京工程有限公司,江苏南京210000
出 处:《安全、健康和环境》2024年第4期14-20,共7页Safety Health & Environment
摘 要:为高效识别打磨焊接作业人员是否佩戴防护面罩,提出了改进VGG-16的深度学习模型,构建了基于VGG-16的深度特征提取网络挖掘图像的重要信息。为解决VGG-16网络对图像局部特征和全局结构信息捕捉的不足,建立基于坐标注意力的空间位置信息感知机制,增强对图像位置和通道信息的关注。最后,建立基于多层全连接层的分类网络输出识别结果。实验表明,该模型对打磨焊接作业人员是否佩戴防护面罩的识别准确率、精确率、召回率和F1分数分别达到95.88%、96.48%、95.25%和95.86%,具有比传统人工巡检方法更好的效果。To efficiently identify whether polishing and welding operators are wearing protective masks,an improved deep learning model of VGG-16 network was proposed,and a deep feature extraction network based on VGG-16 was constructed to mine important information of images.To address the shortcomings of the VGG-16 network in capturing local image features and global structural information,a spatial position information perception mechanism based on coordi-nate attention was established to enhance the attention to image position and channel information.Finally,a classification network based on multiple fully connect-ed layers was established to output recognition re-sults.The experimental results showed that the recog-nition accuracy,precision,recall,and F1 score of this model for whether polishing and welding opera-tors wore protective masks reached 95.88%,96.48%,95.25%,and 95.86%,respectively,which had bet-ter performance than traditional manual inspection methods.
关 键 词:打磨焊接作业 防护面罩 坐标注意力机制 VGG-16网络 深度学习 卷积神经网络(CNN) 智能识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38