检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tomer Urcai Eran Levin Eran Gefen Gal Ribak
机构地区:[1]Faculty of Life Sciences,School of Zoology,Tel Aviv University,Tel Aviv,Israel [2]Steinhardt Museum of Natural History,Israel National Center for Biodiversity Studies,Tel Aviv,Israel [3]Department of Biology,University of Haifa-Oranim,Kiryat Tivon,Israel
出 处:《Insect Science》2024年第2期524-532,共9页昆虫科学(英文版)
摘 要:The scaling of the energetic cost of locomotion with body mass is well documented at the interspecific level.However,methodological restrictions limit our understanding of the scaling of flight metabolic rate(MR)in free-flying insects.This is particularly true at the intraspecific level,where variation in body mass and flight energetics may have direct consequences for the fitness of an individual.We applied a 13C stable isotope method to investigate the scaling of MR with body mass during free-flight in the beetle Batocera rufomaculata.This species exhibits large intraspecific variation in adult body mass as a consequence of the environmental conditions during larval growth.We show that the flight-MR scales with body mass to the power of 0.57,with smaller conspecifics possessing up to 2.3 fold higher mass-specific flight MR than larger ones.Whereas the scaling exponent of free-flight MR was found to be like that determined for tethered-flight,the energy expenditure during free-flight was more than 2.7 fold higher than for tethered-flight.The metabolic cost of flight should therefore be studied under free-flight conditions,a requirement now enabled by the 13C technique described herein for insect flight.
关 键 词:ALLOMETRY body mass COLEOPTERA FREE-FLIGHT insect flight stable carbon isotope tethered-flight
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.111.22