四阶Edgeworth密度函数上的有效域与隐含波动率应用  

Valid Region of Fourth-order Edgeworth Density Function and Its Application on Implied Volatility Smirk

在线阅读下载全文

作  者:沈康力 林炜 张慧增 SHEN Kangli;LIN Wei;ZHANG Huizeng(School of Mathematics,Hangzhou Normal University,Hangzhou 311121,China)

机构地区:[1]杭州师范大学数学学院,浙江杭州311121

出  处:《杭州师范大学学报(自然科学版)》2024年第3期333-340,共8页Journal of Hangzhou Normal University(Natural Science Edition)

基  金:浙江省自然科学基金项目(LQ22A01003);杭州师范大学科研启动基金项目(4085C5020204089);浙江省统计局统计青年研究项目(22TJQN13).

摘  要:以正态分布为基底的Edgeworth级数展开是一个渐进展开序列,其截断形式常用以逼近未知的概率密度函数.若截断的Edgeworth级数能成为一个有效的(非负的)概率密度,前提条件是对参数(累积量)的取值做一些限制.文章介绍了在数值上求解四阶Edgeworth展开中参数的约束区域的算法,从而保证参数限制在有效区域内的四阶Edgeworth展开序列可以被认为是有效的概率密度.此外,给出了基于Black-Scholes公式的四阶Edgeworth密度函数的期权定价公式,并建立了隐含波动率微笑的水平、斜率和曲率与风险中性标准差、偏度和超值峰度之间的联系.The Edgeworth series expansion based on a normal distribution is a sequence of asymptotic expansion,whose truncation form is commonly used in approximately unknown probability density function.The Edgeworth expansion is widely used,and its truncation form is defined as an effective(non-negative)probability density but with some given restrictions on the value of the parameters(cumulants).In this paper,the algorithm for numerically solving the constrained region of the parameters in the fourth-order Edgeworth expansion was introduced,thus ensuring that the fourth-order Edgeworth expansion sequence with parameters restricted within the effective region could be considered as an effective probability density.Furthermore,an option pricing formula for the fourth-order Edgeworth density function based on the Black-Scholes formula was proposed.The relationships among the level,slope,and curvature of the implied volatility smirk and the risk-neutral standard deviation,skewness,and overvalue kurtosis were established.

关 键 词:Edgeworth级数 Edgeworth密度函数 隐含波动率微笑 偏度 峰度 

分 类 号:O211.9[理学—概率论与数理统计] O29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象