煤矿深井通风网络建模与智能控制系统研究  

Research on the Network Modeling and Intelligent Control System of Deep Mine Ventilation

在线阅读下载全文

作  者:王进美 WANG Jinmei(Chaili Coal Mine,Zaozhuang Mining(Group)Co.,Ltd.,Zaozhuang,Shangdong Province,277519 China)

机构地区:[1]枣庄矿业(集团)有限责任公司柴里煤矿,山东枣庄277519

出  处:《科技资讯》2024年第4期183-185,共3页Science & Technology Information

摘  要:通过对煤矿深井通风网络建模与智能控制系统展开研究,旨在提高煤矿深井通风系统的效率和安全性。通过深入分析深井通风网络,构建了基于复杂网络理论的数学模型,准确描述了系统内各节点的关联关系。利用先进的传感技术和实时数据采集手段,建立了深井通风的智能监测系统,实现了对关键参数的高频实时监测与反馈。在智能控制方面,引入深度学习算法,通过大量历史数据的学习和优化,提高了通风系统的自适应调节能力,确保系统在复杂工况下的高效运行。实地验证了所提出系统的可行性和有效性,为煤矿深井通风系统的智能化升级提供有力支持,对提高煤矿生产安全水平具有重要意义。This paper studies the modeling and intelligent control system of the deep mine ventilation network,aiming to improve the efficiency and safety of the deep mine ventilation system.Through the in-depth analysis of the deep mine ventilation network,this paper constructs a mathematical model based on the complex network theory,so as to accurately describe the relationship of each node in the system.By using advanced sensing technol⁃ogy and real-time data acquisition means,this paper establishes an intelligent monitoring system of deep mine venti⁃lation,so as to realize the high-frequency and real-time monitoring and feedback of key parameters.In terms of in⁃telligent control,this paper introduces the deep-learning algorithm,and improves the adaptive adjustment ability of the ventilation system through the learning and optimization of a large number of historical data,so as to ensure the efficient operation of the system under complex conditions.The paper verifies the feasibility and effectiveness of the proposed system,which provides strong support for the intelligent upgrading of the deep mine ventilation system,and has great significance for improving the safety level of coal mine production.

关 键 词:煤矿深井 通风网络 建模 智能控制系统 复杂网络 深度学习算法 实时监测 

分 类 号:TD635[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象