基于自适应上下文匹配网络的小样本知识图谱补全  被引量:1

Adaptive Context Matching Network for Few-shot Knowledge Graph Completion

在线阅读下载全文

作  者:杨旭华[1] 张炼 叶蕾[1] YANG Xuhua;ZHANG Lian;YE Lei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)

机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023

出  处:《计算机科学》2024年第5期223-231,共9页Computer Science

基  金:国家自然科学基金(62176236)。

摘  要:知识图谱在构建过程中需要面对繁杂的现实世界信息,无法建模所有知识,因此需要补全。真实的知识图谱中很多类型的关系通常只有少量的训练实体样本对。因此,如何进行小样本知识图谱补全是一个十分有价值的问题。目前基于嵌入的方法一般通过注意力机制等方法聚合实体上下文信息,通过学习关系嵌入的方式来补全知识图谱,仅考虑关系层面的匹配程度,虽然能够预测未知关系,但往往准确度不高。针对小样本知识图谱补全问题,提出了一个自适应上下文匹配网络(Adaptive Context Matching Network,ACMN)。首先提出一个共性邻居感知编码器,聚合参考集实体上下文,即一跳邻居实体,获得共性邻居感知编码;接着提出一个任务相关实体编码器,挖掘任务实体上下文与共性上下文的相似度信息,区分一跳邻居对当前任务的贡献,增强实体表征;然后提出一个上下文关系编码器获得动态关系表征;最后通过加权求和综合考虑实体上下文和关系的匹配程度,完成补全。ACMN从实体上下文相似度和关系匹配程度两个方面综合评价查询三元组是否成立,能够在小样本的背景下有效提高预测准确性。在两个公共数据集上和其他8个广泛使用的算法进行比较,ACMN在不同规模的小样本情况下,取得了目前最好的补全结果。The knowledge graph needs to face complicated real world information in construction process,and cannot model all knowledge,so it needs to be completed.Many relations in real knowledge graph often have only few entity pairs for training.Therefore,few-shot knowledge graph completion is a very significant problem.At present,embedding-based methods generally aggregate entity context information through attention mechanism or other methods,and complete knowledge graph by learning relation embeddings.These methods only consider the matching degree at relation level.Although they can predict unknown relations,the result is often not accurate.Therefore,an adaptive context matching network(ACMN)is proposed for few-shot know-ledge graph completion.Firstly,a common-neighbor awareness-encoder is proposed to aggregate the references context,that is,one-hop neighbor entities,and obtain common-neighbor awareness embeddings.Secondly,a task-related entity encoder is proposed to mine the similarity information between task entity context and common context,distinguish the contribution of one-hop neighbors to the current task,and enhance task entity representation.Then a context-relation encoder is proposed to obtain dynamic relation representations.Finally,the matching degree of entity context and relations is comprehensively considered through weighted summation to complete the completion.ACMN comprehensively evaluates whether the query triples are tenable from two aspects of entity context similarity and relations matching,which can effectively improve the prediction accuracy in few-shot scena-rios.Compared with other eight widely used algorithms on the two public data sets,ACMN achieves the best completion results in the case of different few-shot sizes.

关 键 词:知识图谱补全 小样本学习 实体上下文 关系预测 表示学习 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象