融合事件相机的视觉场景识别  

Visual place recognition with fusion event cameras

在线阅读下载全文

作  者:刘熠晨 余磊[1] 余淮[1] 杨文[1] Liu Yichen;Yu Lei;Yu Huai;Yang Wen(Electronic Information School,Wuhan University,Wuhan 430072,China)

机构地区:[1]武汉大学电子信息学院,武汉430072

出  处:《中国图象图形学报》2024年第4期1018-1029,共12页Journal of Image and Graphics

基  金:国家自然科学基金项目(62271354,61871297);湖北省自然科学基金项目(2021CFB467)。

摘  要:目的 传统视觉场景识别(visual place recognition,VPR)算法的性能依赖光学图像的成像质量,因此高速和高动态范围场景导致的图像质量下降会进一步影响视觉场景识别算法的性能。针对此问题,提出一种融合事件相机的视觉场景识别算法,利用事件相机的低延时和高动态范围的特性,提升视觉场景识别算法在高速和高动态范围等极端场景下的识别性能。方法 本文提出的方法首先使用图像特征提取模块提取质量良好的参考图像的特征,然后使用多模态特征融合模块提取查询图像及其曝光区间事件信息的多模态融合特征,最后通过特征匹配查找与查询图像最相似的参考图像。结果 在MVSEC(multi-vehicle stereo event camera dataset)和RobotCar两个数据集上的实验表明,本文方法对比现有视觉场景识别算法在高速和高动态范围场景下具有明显优势。在高速高动态范围场景下,本文方法在MVSEC数据集上相较对比算法最优值在召回率与精度上分别提升5.39%和8.55%,在RobotCar数据集上相较对比算法最优值在召回率与精度上分别提升3.36%与4.41%。结论 本文提出了融合事件相机的视觉场景识别算法,利用了事件相机在高速和高动态范围场景的成像优势,有效提升了视觉场景识别算法在高速和高动态范围场景下的场景识别性能。Objective The performance of traditional visual place recognition(VPR)algorithms depends on the imaging quality of optical images.However,optical cameras suffer from low temporal resolution and dynamic range.For example,in a scene with high-speed motion,continuously capturing the rapid changes in the position of the scene in the imaging plane is difficult for an optical camera,resulting in motion blur in the output image.When the scene brightness exceeds the recording range of the photosensitive chip of the camera,output image degradation of the optical camera such as under-exposure and overexposure may occur.The blurring,underexposure,and overexposure of optical images wil lead to the loss of image texture structure information,which will result in the performance reduction of visual scene recognition algorithms.Therefore,the recognition performance of image-based VPR algorithms is poor in high-speed and high dynamic range(HDR)scenarios.Event camera is a new type of visual sensor inspired by biological vision.This camera has the characteristics of low latency and HDR.Using event cameras can effectively improve the recognition performance of VPR algorithms in high-speed and HDR scenes.Therefore,this paper proposes a VPR algorithm fused with event cameras,which utilizes the low latency and HDR characteristics of event cameras to improve the recognition performance of VPR algorithms in extreme scenarios such as high speed and HDR.Method The proposed method first fuses the information of the query image and the events within its exposure time interval to obtain the multimodal features of the query location.The method then retrieves the reference image closest to the multimodal features of the query location in the reference image database.This method also extracts the features of the reference image with good quality using the image feature extraction module and then inputs query image and its events within the exposure time interval to the multimodal to compare the multimodal query information with the reference im

关 键 词:视觉场景识别(VPR) 事件相机 多模态 特征融合 特征匹配 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象