基于策略图的三维位置隐私发布算法研究  

Research on 3D-Location Privacy Publishing Algorithm Based on Policy Graph

在线阅读下载全文

作  者:尹春勇[1] 贾续康 YIN Chunyong;JIA Xukang(School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China)

机构地区:[1]南京信息工程大学计算机学院,南京210044

出  处:《信息网络安全》2024年第4期602-613,共12页Netinfo Security

基  金:国家自然科学基金[61772282]。

摘  要:随着移动智能终端的普及,基于位置服务(Location-Based Services,LBS)的应用迎来了爆发式增长,高层室内建筑是位置服务的重要应用场景之一。然而现有的位置隐私保护算法大多适用于二维位置数据,面向大型室内三维场景的位置隐私保护研究尚且不足,并且缺乏可个性化定制的三维隐私策略。针对该问题,文章提出了一种基于策略图的三维位置隐私发布算法。首先,设计一种基于可定制策略图的位置隐私保护框架,可根据具体场景需求动态定制适合的隐私策略;其次,设计两种面向三维的差分隐私变体机制,结合定制策略图,实现三维场景下的位置隐私保护;最后,在三维数据集上进行仿真实验,实验结果表明,与其他三维位置隐私保护算法相比,文章所提算法具有更好的稳定性和效用性。With the popularization of mobile smart terminals,the application of location-based services has seen explosive growth,and high-rise indoor buildings are one of the important application scenarios of LBS.However,most of the existing location privacy protection algorithms are applicable to 2D location data.The research on location privacy protection for large indoor 3D scenes is still insufficient and lacks personalizable 3D privacy policies.To address this problem,this paper proposed a 3D-location privacy publishing algorithm based on policy graph.Firstly,a customizable policy graph-based location privacy protection framework was designed,which could dynamically customize suitable privacy policies according to specific scene requirements.Secondly,two 3D-oriented differential privacy variant mechanisms were designed in combination with customized policy graph to realize location privacy protection in 3D scenes.Finally,simulation experiments were conducted on 3D datasets.The results demonstrate that,compared to other 3D location privacy preserving algorithms,the proposed algorithm has better stability and utility.

关 键 词:高层室内场景 三维位置隐私 策略图 差分隐私 基于位置服务 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象