非厄密系统哈密顿量的本征值和本征态  

The eigenvalue and eigenvector of a non-Hermitian Hamiltonian

在线阅读下载全文

作  者:范迎迎 曹亲亲 孙宝玺[1] FAN Yingying;CAO Qinqin;SUN Baoxi(College of Physics and Optoelectronic Engineering,Beijing University of Technology,Beijing,China)

机构地区:[1]北京工业大学物理与光电工程学院,北京

出  处:《北京师范大学学报(自然科学版)》2024年第2期169-175,共7页Journal of Beijing Normal University(Natural Science)

基  金:国家自然科学基金资助项目(11874002)。

摘  要:利用扭结哈密顿算子构造了非厄密哈密顿量,探讨了非厄密哈密顿量本征值和本征态的性质.结果表明:非厄密哈密顿量的能量本征值为复数,且随着模型参数和角度的变化而变化,可能会出现奇异点;通过理论推导可确定本征值奇异点的位置和个数.非厄密哈密顿量本征矢量之间的正交归一性呈现与传统量子力学完全不同的特点;考虑基尔霍夫电流定律,用电阻、电感及电容构造电路,可获得非厄密哈密顿量.The non-Hermitian Hamiltonian is constructed with the knot operators,and then the eigenvalue and corresponding eigenvector are evaluated respectively.It manifests that the eigenvalue of a non-Hermitian Hamiltonian is a complex number,and changes with the angle and the tunable parameter.The number and position of exceptional points are obtained theoretically.Moreover,the biorthogonal normalization of the right and left eigenvectors of the non-Hermitian Hamiltonian is discussed,which is different from the case in the traditional quantum mechanics.Finally,according to the Kirchhoff’s current law,the non-Hermitian Hamiltonian is realized experimentally in an electric circuit with resistor,inductor and capacitor components.

关 键 词:非厄密哈密顿量 扭结哈密顿算子 奇异点 基尔霍夫电流定律 RLC电路 

分 类 号:O413.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象