Numerical simulation and behavior prediction of a space net system throughout the capture process: Spread, contact, and close  被引量:2

在线阅读下载全文

作  者:Weicheng Huang Huaiwu Zou Yongjun Pan Kai Zhang Junjie Zheng Jinpeng Li Shuai Mao 

机构地区:[1]School of Mechanical Engineering,Southeast University,Nanjing,China [2]Shanghai Institute of Aerospace Systems Engineering,Shanghai,China [3]College of Mechanical and Vehicle Engineering,Chongqing University,ChongQing,China

出  处:《International Journal of Mechanical System Dynamics》2023年第3期265-273,共9页国际机械系统动力学学报(英文)

基  金:Natural Science Foundation of Jiangsu Province,China,Grant/Award Number:BK20220794。

摘  要:In this paper,we develop an exhaustive numerical simulator for the dynamic visualization and behavior prediction of the tether-net system during the whole space debris capture phases,including spread,contact,and close.First of all,to perform its geometrically nonlinear deformation,discrete different geometry theory is applied to model the mechanical response of a flexible net.Based on the discretization of the whole structure into multiple vertexes and lines,the internal force and associated Hession are derived in a closed form to solve a series of nonlinear dynamic equations of motion.The spread and deployment of a packaged net can be realized using this well-established net solver.Next,a multidimensional incremental potential formulation is selected to achieve the intersection-free boundary nonlinear contact and collision between the deformable net and rigid debris.Finally,for the closing mechanism analysis,a log-like barrier functional is derived to achieve the nondeviation condition between the ring–rod linkage system.The C2 continuous log barrier functionals constructed for both the contact model and the linkage system are smooth and differentiable,and,therefore,the nonlinear net capture dynamic system can be efficiently solved through a fully implicit time integrator.Overall,as a demonstration,the whole capture process of a defunct satellite using a hexagon net is simulated through our well-established numerical framework.We believe that our comprehensive numerical methods could provide new insight into the optimal design of active debris removal systems and promote further development of the online control of tether tugging systems.

关 键 词:tether-net system space debris capture nonlinear dynamics multiflexible body dynamics 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象