一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法  被引量:2

A method based on CNN and FFT‑ELM for fault identification and location of transmission lines

在线阅读下载全文

作  者:裴东锋 刘勇 闫柯柯 郭威 宋福如 田志杰 PEI Dongfeng;LIU Yong;YAN Keke;GUO Wei;SONG Furu;TIAN Zhijie(Handan Electric Power Supply Company,State Grid Hebei Electric Power Co.,Ltd.,Handan 056002,China;Hebei Silicon Valley Academy,Handan 057151,China)

机构地区:[1]国网河北省电力有限公司邯郸供电分公司,河北邯郸056002 [2]河北硅谷研究院,河北邯郸057151

出  处:《电力科学与技术学报》2024年第1期164-170,共7页Journal of Electric Power Science And Technology

基  金:国网河北省电力有限公司科技项目(kj2021‑042)。

摘  要:及时、准确地检测输电线路故障类型与位置是提高电力系统可靠性最重要的问题之一,为此提出一种基于卷积神经网络(convolutional neural networks,CNN)与基于快速傅里叶变换(fast Fourier transform,FFT)的极限学习机(extreme learning machine,ELM)分类模型并行的输电线路故障识别及定位方法。首先,以故障电压时序图作为输入,构建CNN;然后,利用FFT将时域故障电压数据分解,提取各频段的电压峰值与相角作为故障特征样本;接着,以提取的故障特征样本集作为输入,构建ELM网络;最后,通过特征融合层将2个神经网络进行融合,输出故障类型和定位结果。实验结果表明,此方法对输电线路故障识别的准确率为99.95%、故障定位误差在500 m以内、平均误差为263.5 m,可靠性优于其他模型。It is one of the most important problems in power system reliability to detect the fault types and locations of transmission lines in time and accurately.Th is paper presents an approach for fault identification and location of transmission lines based on convolutional neural networks(CNN)paralled with extreme learning machine(ELM)based on fast Fourier transform(FFT).First,CNN is constructed with fault voltage sequence diagram as input.Then FFT is used to decompose the fault voltage data in time domain and extract the peak voltage and phase angle of each frequency band as fault feature samples.The ELM network is then constructed by taking the extracted fault feature sample set as input.Finally,the two neural networks are fused by the feature fusion layer to output the fault type and location results.Experimental results show that the accuracy of the method is 99.95%,the error of fault location is less than 500 m and the average error is 263.5 m;the reliability of the method is better than other models.

关 键 词:故障识别及定位 输电线路 并行神经网络 卷积神经网络 快速傅里叶变换 极限学习机 

分 类 号:TM863[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象