耦合故障转子系统的非线性动力学分析  

Nonlinear Dynamic Analysis of Coupled Faulty Rotor Systems

在线阅读下载全文

作  者:施路广 张晓菲 陈克[1] 张宏远[1] SHI Luguang;ZHANG Xiaofei;CHEN Ke;ZHANG Hongyuan(School of Automobile and Transportation,Shenyang Ligong University,Shenyang 110159,China;Technical Center of Chinese People's Liberation Army 6409 Factory,Fushun 113105,China)

机构地区:[1]沈阳理工大学汽车与交通学院,辽宁沈阳110159 [2]中国人民解放军第6409工厂技术中心,辽宁抚顺113105

出  处:《汽车实用技术》2024年第9期50-54,79,共6页Automobile Applied Technology

基  金:辽宁省教育厅基本科研项目(JYTMS20230216)。

摘  要:为研究多故障耦合对转子系统动力学的影响,建立刚性支承下的裂纹-碰摩耦合故障转子系统动力学模型,采用四阶Runge-Kutta方法对方程进行数值求解,对比分析系统在定子刚度以及裂纹深度等参数变化下转子系统的动力学响应。借助系统的分岔图对其非线性动力学行为以及系统稳定性进行分析,得到故障和转速之间的作用规律。结果表明,随着参数的改变,系统会呈现出丰富的动力学行为,包括单周期、多周期、拟周期和混沌等,该研究结果为汽车中驱动电机转子系统的设计和故障诊断提供了理论依据。To study the influence of multi fault coupling on the dynamics of rotor systems,a crack-friction coupling fault rotor system dynamics model under rigid support is established.The fourth-order Runge-Kutta method is used to numerically solve the equation,and the dynamic response of the rotor system under changes in parameters such as stator stiffness and crack depth is compared and analyzed.By using the bifurcation diagram of the system to analyze its nonlinear dynamic behavior and system stability,the interaction law between faults and rotational speed is obtained.The results show that with the change of parameters,the system is exhibit rich dynamic behaviors,including single period,multi period,quasi period,and chaos.The research results provide a theoretical basis for the design and fault diagnosis of the drive motor rotor system in automobiles.

关 键 词:转子系统 非线性动力学 裂纹-碰摩 耦合故障 

分 类 号:TH113[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象