基于图像分析的掘进工作面粉尘颗粒检测方法  

A method for detecting dust particles in excavation working face based on image analysis

在线阅读下载全文

作  者:龚晓燕[1] 冯浩 付浩然 陈龙[1] 常虎强 刘壮壮 贺子纶 裴晓泽 薛河[1] GONG Xiaoyan;FENG Hao;FU Haoran;CHEN Long;CHANG Huqiang;LIU Zhuangzhuang;HE Zilun;PEI Xiaoze;XUE He(College of Mechanical Engineering,Xi'an University of Science and Technology,Xi'an 710054,China;Shaanxi Coal Group Shenmu Ningtiaota Mining Co.,Ltd.,Shenmu 719300,China)

机构地区:[1]西安科技大学机械工程学院,陕西西安710054 [2]陕煤集团神木柠条塔矿业有限公司,陕西神木719300

出  处:《工矿自动化》2024年第4期55-62,77,共9页Journal Of Mine Automation

基  金:国家自然科学基金面上资助项目(52374226);陕西省自然科学基础研究计划−企业−陕煤联合基金资助项目(2021JLM-01)。

摘  要:基于光散射原理测定粉尘质量浓度只能定时定点手动检测,实时性差,且只能检测出粉尘质量浓度,并不能给出粒径分布范围。目前基于图像分析的粉尘颗粒检测研究主要是针对粉尘质量浓度或粒径分布进行单方面研究,并不能实现粉尘质量浓度和粒径分布范围的同时检测。针对上述问题,提出了一种基于图像分析的掘进工作面粉尘颗粒检测方法,探究图像特征与粉尘质量浓度、粒径分布间的关系。通过粉尘样本收集及图像采集装置,采集粉尘颗粒图像并获取采集图像时的粉尘质量浓度。编写粉尘样本图像处理算法,提取图像的灰度特征、纹理特征、几何特征相关参数。对提取的图像特征与实测粉尘质量浓度进行相关性分析,选取相关性较大的图像特征作为参数建立回归数学模型。提取粉尘颗粒对象像素点个数,结合转换系数,基于几何当量等效面积径计算粉尘粒径大小及分布范围。实验结果表明:实测粉尘质量浓度与建立的图像特征多元非线性回归模型数学模型计算值间的平均相对误差为12.37%,标准实测粒径与几何当量等效面积径得到的粒径分布间的最大相对误差为8.63%,平均相对误差为6.37%,验证了基于图像特征的粉尘质量浓度回归数学模型和基于几何当量等效面积径分布数学模型的准确性。Based on the principle of light scattering,measuring dust concentration can only be done manually at fixed times and locations,with poor real-time performance.It can only detect dust mass concentration and cannot provide a range of particle size distribution.At present,research on dust particle detection based on image analysis mainly focuses on unilateral research on dust mass concentration or particle size distribution.It cannot achieve simultaneous detection of dust mass concentration and particle size distribution range.In order to solve the above problems,a method for detecting dust particles in excavation working face based on image analysis is proposed.It explores the relationship between image features and dust mass concentration and particle size distribution.By using a dust sample collection and image acquisition device,dust particle images are collected and the dust mass concentration at the time of image acquisition is obtained.An image processing algorithm for dust samples,is developed to extract parameters related to grayscale features,texture features,and geometric features of the image.The correlation analysis between the extracted image features and the measured dust mass concentration is performed,and the image features with high correlation is selected as parameters to establish a regression mathematical model.The method extracts the number of pixels in the dust particle object.Combining with the conversion coefficient,the method calculates the size and distribution range of the dust particle based on the geometric equivalent area diameter.The experimental results show that the average relative error between the measured dust mass concentration and the calculated values of the established image feature multiple nonlinear regression model mathematical model is 12.37%.The maximum relative error between the standard measured particle size and the geometric equivalent area size obtained from the particle size distribution is 8.63%,and the average relative error is 6.37%.This verifies the accuracy o

关 键 词:掘进工作面 粉尘质量浓度 粉尘粒径分布范围 图像分析 几何当量等效面积径 皮尔逊相关系数 

分 类 号:TD714[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象