基于门控循环单元编解码器的锂离子电池荷电状态估计  被引量:3

Lithium-ion Battery State of Charge Estimation Based on Gated Recurrent Unit Encoder-decoder

在线阅读下载全文

作  者:刘康 康龙云[1,2] 岳睿 谢缔 LIU Kang;KANG Longyun;YUE Rui;XIE Di(School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong Province,China;Guangdong Key Laboratory of Clean Energy Technology,Guangzhou 510640,Guangdong Province,China)

机构地区:[1]华南理工大学电力学院,广东省广州市510640 [2]广东省绿色能源技术重点实验室,广东省广州市510640

出  处:《电网技术》2024年第5期2161-2169,共9页Power System Technology

基  金:广东省基础与应用基础研究基金区域联合基金项目(地区培育项目)(2022A1515140009)。

摘  要:锂离子电池荷电状态(state of charge,SOC)估计技术是电池管理系统(battery management system,BMS)里的关键性技术之一,其精度要求随着锂离子电池应用领域的不断拓宽而越来越高。由此,该文提出一种基于门控循环单元(gated recurrent unit,GRU)编解码器(encoder decoder,ED)的估计方法;在编解码器框架下,首先利用双向GRU网络对可测量变量序列双向捕获依赖关系并将相关信息编码成语境向量,然后使用单向GRU网络完成对语境向量的解码。相比之前提出的循环神经网络,此类端到端模型可以从输入序列中更完整地学习到序列信息以建立出更精确的非线性SOC估计模型。实验数据验证表明,相较于3种双向循环神经网络,该文提出的门控循环单元编解码器(gated recurrent unit encoderdecoder,GRU-ED)模型在固定环境温度下取得了最佳的SOC估计效果;同时还在变温环境下实现了小误差的SOC估计,得到的平均绝对误差(meanabsoluteerror,MAE)与最大误差(maximum error,MAX)分别为0.92%与4.96%。1:The state of charge(SOC)estimation technology matters in battery management systems(BMS),and its accuracy requirements have been increasing as the range of uses for lithium-ion batteries expands.In order to achieve more accurate SOC estimation,this paper proposes an SOC estimation technique based on the gated recurrent unit(GRU)encoder-decoder(ED).With the ED framework,the dependencies of the input sequence are bi-directionally captured by the encoder using a bi-directional GUR network,and the encoder condenses the related information of the input sequence into a context vector,which is subsequently unlocked by the decoder using a unidirectional GRU network.Compared to the previously proposed recurrent neural networks,such end-to-end models can better learn the sequence information from the input sequences to build a more accurate nonlinear SOC estimation model.The simulation experiments demonstrate that the proposed GRU-ED model achieves the best SOC estimation under a fixed temperature compared to 3 kinds of bidirectional recurrent neural networks.Moreover,it accurately estimates the SOC with a low mean absolute error(MAE)and maximum error(MAX)of 0.92%and 4.96%under the changing ambient temperatures.

关 键 词:锂离子电池 荷电状态估计 门控循环单元 编解码器 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象