基于ISODATA改进K均值聚类算法的NLOS识别技术  被引量:1

NLOS identification technique based on K-means clustering algorithm improved by ISODATA

在线阅读下载全文

作  者:韦子辉[1] 廖戈 李明轩 周敬仪 董鹏 Wei Zihui;Liao Ge;Li Mingxuan;Zhou Jingyi;Dong Peng(School of Quality and Technical Supervision,Hebei University,Baoding 071002,China)

机构地区:[1]河北大学质量技术监督学院,保定071002

出  处:《电子测量技术》2024年第4期172-180,共9页Electronic Measurement Technology

基  金:国家自然科学基金(62173122);保定市科技计划项目(2272P007)资助。

摘  要:针对超宽带信号中非视距误差造成定位系统定位偏差的问题,提出了一种改进无监督算法的NLOS识别技术。本文提取信道脉冲冲激响应波形的8种特征参量,选择主成分分析算法对多维特征进行降维处理;采用基于迭代自组织数据分析法改进的K均值聚类算法,自适应地选择K值来区分视距和非视距信号;最后,结合特征参量的冗余性、相关性对分类结果进行判别。实验结果表明,该方法能有效地识别出NLOS信号,且具有较好的环境适应性,识别准确度达到95%。To mitigate the issue of positioning deviations in positioning systems caused by non-line of sight(NLOS)errors in Ultra-Wide Ban signals,this study presents an unsupervised clustering method that utilizes the characteristic parameters of the channel impulse response for identifying NLOS signals.The method involves the extraction of eight characteristic parameters from the channel impulse response waveform,followed by the use of the principal component analysis algorithm to reduce the dimension of the multi-dimensional features.An improved K-means clustering algorithm,based on iterative self-organizing data analysis,is then used to select K-values adaptively for distinguishing between LOS and NLOS signals.Finally,the redundancy and correlation of feature parameters are combined to distinguish the classification results.The experimental results demonstrate that this approach effectively identifies NLOS signals with better environmental adaptability and has a recognition accuracy of 95%.

关 键 词:超宽带定位 非视距识别 无监督算法 信道冲激响应 

分 类 号:TP393.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象