检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁明明 刘晓文 侯昊 陈佳铭 牛连山 姜艳朋 LIANG Mingming;LIU Xiaowen;HOU Hao;CHEN Jiaming;NIU Lianshan;JIANG Yanpeng(China Petroleum Pipeline Research Institute Co.Ltd.;China Petroleum Pipeline Engineering Co.Ltd.International Branch)
机构地区:[1]中国石油天然气管道科学研究院有限公司 [2]中国石油管道局工程有限公司国际分公司
出 处:《油气储运》2024年第4期449-456,共8页Oil & Gas Storage and Transportation
摘 要:【目的】传统焊枪喷嘴结构设计中存在开发周期长、成本高、保护气体流场保护效果不明确的问题,优化焊枪喷嘴结构、控制保护气体流场等显得尤为必要。【方法】采用计算流体动力学软件Fluent,针对保护气体流量、焊枪喷嘴结构、喷嘴与坡口的间距等关键参数进行数值模拟,并通过气体染色试验与焊接试验,对模拟结果进行验证。【结果】在管道窄间隙坡口熔化极气体保护电弧焊(Gas Metal Arc Welding,GMAW)工艺中,选用20 L/min的保护气体流量可以获得良好的保护效果;锥形与扁锥喷嘴效果较为理想,其中扁锥喷嘴结构使得保护气体的流场呈现较小的圆锥度且流动更为挺直,在相对较低的保护气体流量下即可有效抵抗侧风干扰,保持稳定的焊接环境;当焊枪喷嘴与坡口的间距控制在15 mm以内时,保护气体的流场具有良好的保护效果。采用气体染色试验及焊接试验对锥形与扁锥喷嘴的模拟结果进行验证,流场及焊接质量与模拟结果相符,表明采用数值模拟方法对保护气体流场的优化设计是切实可行的。【结论】计算流体动力学模拟技术能有效优化焊枪喷嘴的结构设计、缩短研发周期、增强焊接质量的稳定性,并显著提高窄间隙坡口GMAW工艺中保护气体的利用效率,可为焊枪喷嘴结构设计及保护气体流场的调控提供新的思路与技术参考。(图9,表1,参22)[Objective]This paper seeks to address shortcomings in the conventional structural design of welding torch nozzles,such as prolonged development cycles,high costs,and uncertainty regarding the efficacy of shielding gas flow field protection.[Methods]The fluid dynamics computational software Fluent was utilized for numerical simulations,concentrating on critical parameters like shielding gas flow rates,welding torch nozzle structures,and nozzle-to-bevel spacings.The simulation results were subsequently verified and analyzed through gas dyeing experiments and practical welding operations.[Results]In the gas metal arc welding(GMAW)process context involving narrowgap bevels,a shielding gas flow rate of 20 L/min yielded effective protection to pipes.The conical nozzle and the flat conical nozzle presented ideal results in which the flat conical nozzle structure helped the shielding gas flow field obtain minimal conicity and straighter flow,fostering stable welding conditions by efficiently resisting crosswind disturbances at lower flow rates.Ensuring a nozzle-to-bevel spacing of less than 15 mm produced a shielding gas flow field with enhanced protection.The subsequent gas dyeing experiment and welding operations mirrored the simulation results on the flow field and welding performance of the conical nozzle and flat conical nozzle,affirming the feasibility of simulation methods for optimizing shielding gas flow fields.[Conclusion]The study findings showcase the effectiveness of fluid dynamic computation simulation technology in optimizing the structural design of welding torch nozzles and accelerating the development cycles,significantly improving the utilization efficiency of shielding gas in the GMAW welding process with narrow-gap bevels,and enhancing the stability of welding quality.By emphasizing the important role of simulation in welding process improvement,this paper offers new insights and technical references for the structural design of welding torch nozzles and the regulation of shielding gas flow fields.(
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.232.123