检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周炽 杨春夏 ZHOU Chi;YANG Chunxia(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
机构地区:[1]上海师范大学信息与机电工程学院,上海201418
出 处:《上海师范大学学报(自然科学版中英文)》2024年第2期268-272,共5页Journal of Shanghai Normal University(Natural Sciences)
基 金:国家自然科学基金(61801293)。
摘 要:基于电磁成像模型,针对逆散射问题的病态性和非线性性质,引入压缩感知(CS)中的全变分(TV)算法,旨在减少所需天线数量,并提高电磁成像的图像质量.在玻恩(Born)迭代的基础上,引入全变分压缩感知算法(TV-CS).仿真结果显示:即使目标被障碍物遮挡,该算法也能够在配置较少探测天线的情况下,对目标位置和形状进行准确的重构.Based on the electromagnetic imaging model,the ill-posed and nonlinear nature of the inverse scattering problem was addressed by introducing the total variation(TV)algorithm in compressive sensing(CS)to reduce the required number of antennas and to enhance the image quality of electromagnetic imaging.Building upon the Born iteration,the total variation compressive sensing(TV-CS)algorithm was introduced.Simulation results demonstrated that this algorithm could achieve more accurate reconstruction of target position and shape with fewer deployed antennas,even in scenarios where the target was obscured.
关 键 词:电磁逆散射 压缩感知(CS) Born迭代 全变分(TV)算法
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.81.212