检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐彦恒 李海霞 XU Yanheng;LI Haixia(Lanzhou Depot of China Railway Lanzhou Bureau Group Co.,Ltd.,Lanzhou,Gansu 730050,China;School of Electronic and Electrical Engineering,Lanzhou Petrochemical University of Vocational Technology,Lanzhou,Gansu 730060,China)
机构地区:[1]中国铁路兰州局集团有限公司兰州车辆段,甘肃兰州730050 [2]兰州石化职业技术大学电子电气工程学院,甘肃兰州730060
出 处:《自动化应用》2024年第8期211-213,216,共4页Automation Application
基 金:甘肃省高等学校创新基金项目(2022B-299)。
摘 要:铁路客车转向架在客车安全运行中发挥重要作用,为此,研究了人工智能在铁路安全中的应用,并基于YOLOv4的单阶段深度学习方法对铁路客车转向架可视部位的油压减震器漏油、夹带异物和车钩缓冲器失效故障进行了检测。首先介绍了目标检测模型的结构,采用K-means++聚类方法生成了更准确的锚眶位置和参数。然后建立了转向架关键部位的故障图像数据集,并进行了数据增强处理,以尽可能地减少过拟合,提高深度神经网络模型的性能。最后通过对比实验,证明了基于深度学习的故障检测精度在不同客车转向架不同位置的故障检测场景中具有更好的效果。The bogies of railway passenger cars play an important role in the safe operation of passenger cars.Therefore,this paper studies the application of artificial intelligence in railway safety,and uses YOLOv4's single-stage deep learning method to detect oil leakage,foreign object inclusion,and coupler buffer failure faults in the visible parts of railway passenger car bogies.Firstly,the structure of the target detection model is introduced,and the K-means++clustering method is used to generate more accurate anchor orbital position and parameters.Then,the fault image data set of the key parts of the bogie is established,and the data enhancement processing is carried out to reduce the overfitting as much as possible and improve the performance of the deep neural network model.Finally,through comparative experiments,it is proved that the fault detection accuracy based on deep learning has better effect in different fault detection scenarios of different positions of passenger car bogies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49