检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周贺 许伊键 张远进[1,2] ZHOU He;XU Yijian;ZHANG Yuanjin(China Emergency Management Research Center,Wuhan University of Technology,Wuhan 430070,China;不详)
机构地区:[1]武汉理工大学中国应急管理研究中心,湖北武汉430070 [2]武汉理工大学安全科学与应急管理学院,湖北武汉430070 [3]合肥工业大学土木与水利工程学院,安徽合肥230009
出 处:《武汉理工大学学报(信息与管理工程版)》2024年第2期306-311,共6页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:湖北省自然科学基金项目(2021CFB017);安全预警与应急联动技术湖北省协同创新中心开放课题重点项目(AY2023-1-3).
摘 要:为了解决随机信号在传递接收过程中可能出现的数据不规则、不完整的问题,提出了一种极值梯度提升树-支持向量回归(XGBoost-SVR)与门控循环单元神经网络结合的预测方法,用于稀疏随机信号的缺失数据填补。先使用极值梯度提升树和支持向量回归结合对原始数据集填补,再使用门控循环单元模型进行训练并预测出缺失的数据,最后通过傅里叶变换和小波变换,实现功率谱估计。数值分析结果表明:在含有噪声干扰的情况下,即使数据缺失高达70%,该预测方法仍然可以很好地还原目标功率谱。该方法处理的缺失数据可以更好地还原随机信号的特征,为信号预测和灾害预防提供有力支持。In order to solve the problem of irregular and incomplete data that may occur during the transmission and reception of random signals,a prediction method based on the combination of XGBoost-SVR and gated recurrent unit neural network was proposed for use missing data filling for sparse random signals.Firstly,the original dataset was filled using an extreme gradient boosting tree and support vector regression.Further the gated cyclic unit model was used to train and predict the missing data.Finally,the power spectrum estimation was achieved by Fourier transform or wavelet transform.The numerical analysis results showed that in the presence of noise interference,even if the data is missing by up to 70%,the proposed method can reproduce the target power spectrum well.The missing data processed by this method can better restore the characteristics of random signals,providing strong support for signal prediction and disaster prevention.
关 键 词:数据缺失 门控循环单元 傅里叶变换 小波变换 功率谱估计
分 类 号:O324[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49