融合非核心词EDA和SSMix的雷达故障文本分类方法  

Radar Fault Text Classification Method for the Fusion of Non-core Words of EDA and SSMix

在线阅读下载全文

作  者:谢雨希 杨江平[1] 孙知建[1] 胡欣[1,2] XIE Yuxi;YANG Jiangping;SUN Zhijian;HU Xin(Air Force Early Warning Academy,Wuhan 430014,China;Unit 93498 of PLA,Shijiazhuang 050000,China)

机构地区:[1]空军预警学院,武汉430014 [2]解放军93498部队,石家庄050000

出  处:《火力与指挥控制》2024年第4期136-141,共6页Fire Control & Command Control

基  金:军内科研基金资助项目(××××41721)。

摘  要:对雷达装备故障文本进行智能化分类,有助于提高雷达装备保障效率。针对雷达故障文本专业性强,样本量小且不平衡的问题,通过非核心词EDA进行类内数据增强,以实现在增加文本量的同时保持关键信息不变。针对非核心词EDA方法产生的新样本多样性不够的问题,增加SSMix(saliency-based span mixup for text classification),进行类间数据增强,通过对输入文本非线性的交叉融合来提升文本的多样性。实验证明,与现有的经典基线分类方法和典型数据增强分类方法相比,该方法在准确率上有较大幅度的提升。The intelligent classification of radar equipment fault text is carried out and it is helpful to improve the support efficiency of radar equipment.To solve the problems of highly specialized radar fault text with small amount of samples,and imbalanced classes,the non-core word EDA is used to increase the amount of the text while keeping the key information unchanged.As the diversity of new samples generated by the non-core word EDA is not enough,the SSMix model is added to augment the data between classes,the text diversity is improved by inputting the non-linear cross fusion of the text.The experiments show that the accuracy of the proposed method is greatly improved compared with the present classical baseline classification methods and typical data augmentation classification methods.

关 键 词:雷达故障文本 非核心词EDA SSMix 文本数据增强 分类 

分 类 号:TN95[电子电信—信号与信息处理] TP391.1[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象