主成分分析和灰色模型组合的身管多点烧蚀磨损量预测  

Prediction of Gun Barrel Multi-point Erosion and Wear Based on Principal Component Analysis and Gray Model Combination

在线阅读下载全文

作  者:康总宽[1,2] 闫彬 周子璇[2] 宋洪震 陈学军[1] KANG Zongkuan;YAN Bin;ZHOU Zixuan;SONG Hongzhen;CHEN Xuejun(Northwest Institute of Mechanics&Electrical Engineering,Xianyang 712099,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]西北机电工程研究所,陕西咸阳712099 [2]华中科技大学机械科学与工程学院,武汉430074

出  处:《火力与指挥控制》2024年第4期142-149,共8页Fire Control & Command Control

摘  要:身管是火炮类武器的关键零件,对其烧蚀磨损量进行预测,有助于保持火炮作战效能。针对火炮身管沿轴向各点烧蚀磨损量需分别建立数学模型进行预测问题,提出一种组合烧蚀磨损量预测方法。采用主成分分析(principal component analysis,PCA)方法对身管多点烧蚀磨损量进行数据空间降维,提取反映烧蚀磨损量变化的主成分,利用灰色模型对主成分进行多步预测,通过PCA逆运算获得身管内膛多点烧蚀磨损量预测值。结果表明,在历史数据较少的条件下,通过选择合适的预测步数可获得较为准确的预测值,为身管内膛多点烧蚀磨损量的预测提供了一种新的有效途径。Barrel is a key part of artillery weapons.To predict its erosion and wear is helpful to maintain the operational effectiveness of artillery.Aiming at the problem that it is necessary to establish a mathematical model to predict the erosion and wear of gun barrel at each point along the axis,acombined erosion and wear prediction method was propsoed.Principal component analysis(PCA)was used to reduce the dimensionality of the data of the multi-point erosion and wear of artillery barrel,and principal components reflecting erosion and wearchanges were extracted.The gray model was used to predict the multi-step of the principal components,and the predicted value of multi-point erosion and wear of the barrel was obtained by PCA inverse calculation.The results show that,under the condition of less historical data,more accurate prediction value can be obtained by selecting the appropriate numbers of prediction step,which provides a new effective way for the prediction of multi-point erosion and wear of the bore.

关 键 词:身管 烧蚀磨损 主成分分析 灰色模型 

分 类 号:TJ3[兵器科学与技术—火炮、自动武器与弹药工程] TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象