检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:司家瑞[1] 杨逸飞 迪力亚尔·阿不都克热木 李晶[3] Si Jiarui;Yang Yifei;Abudukeremu Diliyaer;Li Jing(School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China;Second School of Clinical Medicine,Tianjin Medical University,Tianjin 300222,China;Tianjin Medical University Chu Hsien-I Memorial Hospital,Tianjin 300070,China)
机构地区:[1]天津医科大学基础医学院,天津300070 [2]天津医科大学第二临床医学院,天津300222 [3]天津医科大学朱宪彝纪念医院,天津300070
出 处:《数字医学与健康》2023年第1期22-27,共6页DIGITAL MEDICINE AND HEALTH
摘 要:目的研究比较长短时记忆(LSTM)神经网络的单维输入、多维输入模型以及反向传播(BP)神经网络在动态血糖领域的预测效果。方法研究获取2021年6月至2022年1月天津医科大学朱宪彝纪念医院18例2型糖尿病患者血糖值及其中1例患者的运动步数、饮食摄入热量数据,建立以血糖为数据的单维输入模型和以血糖、步数、摄入热量为数据的多维输入模型两种基于深度学习中LSTM神经网络的预测模型,设置预测未来血糖的时间梯度分别为6、12、24 h,再计算预测值与实际值的均方根误差(RMSE)来评估模型间的差异,并同时基于BP神经网络建立单维预测模型,并与LSTM神经网络结果进行对比。结果6、12、24 h预测时,基于LSTM神经网络的单维预测模型的RMSE分别为0.47、0.55、0.61;多维预测模型的RMSE分别为0.31、0.50、0.56;基于BP神经网络的单维预测模型的RMSE分别为0.38、0.59、0.63。基于LSTM神经网络建立的单维预测模型与多维预测模型都展现出了较高的精确度,且模型精确度随预测时间梯度增加而降低。对同一患者进行对比之后可确定,多维预测模型的精确度更高;除此之外,LSTM神经网络的结果精确度比BP神经网络结果精确度更高。结论LSTM神经网络可作为动态血糖预测领域的有效手段。Objective This study aims to compare the performance of the single-dimensional input model and the multi-dimensional input model of the long short-term memory(LSTM)neural network and the backpropagation neural network in predicting dynamic blood glucose levels.Methods Blood glucose values from 18 patients with type 2 diabetes from June 2021 to January 2022 in Tianjin Medical University Chu Hsien-I Memorial Hospital were collected,including one patient whose steps recorded during exercise and dietary calorie intake data were also obtained.Two prediction models based on LSTM neural network were developed:a one-dimensional model with blood glucose as input and a multi-dimensional model with blood glucose,steps,and intake calories as inputs.Time intervals of 6 hours,12 hours,and 24 hours were set for predicting future blood glucose levels.The root mean square error(RMSE)between the predicted and actual values was calculated to assess the performance of the models.Additionally,the results of the single-dimensional prediction model based on the backpropagation neural network were compared with those of the LSTM neural network model.Results The RMSEs for the 6-hour,12-hour,and 24-hour predictions were 0.47,0.55 and 0.61,respectively,for the single-dimensional LSTM model.The RMSEs for the multi-dimensional LSTM model were 0.31,0.50 and 0.56,respectively.The average RMSEs for the single-dimensional backpropagation model were 0.38,0.59 and 0.63,respectively.Both the single-dimensional and multi-dimensional LSTM models demonstrated high accuracy,with accuracy decreasing as the prediction time gradient increased.Comparison of the results for one patient indicated that the multi-dimensional model was more accurate.Furthermore,the LSTM neural network exhibited higher accuracy compared to the backpropagation neural network.Conclusion The LSTM neural network proves to be an effective method for dynamic blood glucose prediction.
关 键 词:2型糖尿病 长短时记忆神经网络 均方根误差 血糖预测 深度学习
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145