检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chao Li Lei Wang Jie Li Yang Chen
机构地区:[1]School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai,201620,China [2]Discipline of Civil and Infrastructure Engineering,RMIT University,Melbourne,3001,Australia [3]School of Naval Architecture and Civil Engineering,Shanghai Jiao Tong University,Shanghai,200240,China
出 处:《Journal of Rock Mechanics and Geotechnical Engineering》2024年第5期1896-1917,共22页岩石力学与岩土工程学报(英文版)
基 金:great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial support;National Nature Science Foundation of China(Grant No.12172211)for their financial support.
摘 要:Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
关 键 词:Expansive soils Swelling pressure Machine learning(ML) Multi-algorithm ensemble Sensitivity analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.79.7