页岩油水平井压裂参数优化与产能预测评估研究  

Research on fracturing parameter optimization and productivity prediction and evaluation of shale oil horizontal wells

在线阅读下载全文

作  者:郭小超[1] 樊涛[1] 史东坡[1] 范锋 周宇峰 谷团[1] GUO Xiaochao;FAN Tao;SHI Dongpo;FAN Feng;ZHOU Yufeng;GU Tuan(Exploration and Development Research Institute of Liaohe oil field Company,Panjin 124010,Liaoning China)

机构地区:[1]辽河油田公司勘探开发研究院,辽宁盘锦124010

出  处:《粘接》2024年第5期117-120,共4页Adhesion

基  金:国家青年基金项目(项目编号:52104032)。

摘  要:采用水平井体积压裂技术,建立了页岩油水平井体积压裂产能预测模型,以我国西部某地的2口井为例,分析了裂缝数量、半长和导流能力对页岩油藏开发的影响。结果表明,在生产初期,不同裂缝数下的产油量显著增加,但随着时间推移逐渐变缓。裂缝数量越多,产油量越高,累积产油量的增长率却大大降低。当断裂数超过50时,增长率降至1%以下,增加裂缝数量对产油量的增加贡献不大。通过对实际页岩气井的预测分析,基于LSTM神经网络的页岩气产能预测模型的的平均绝对百分比误差仅为2.346%。对页岩油井产能影响最大的2个主要影响因素是改造体积和裂缝参数。The volume fracturing capacity prediction model of horizontal wells in shale oil was established by using the volume fracturing technology of horizontal wells,and the influence of fracture number,half-length and diversion capacity on the development of shale reservoirs was analyzed by taking two wells in western China as an example.The research results indicated that in the early stages of production,the oil production under different crack numbers significantly increased,gradually slowing down over time.The larger the number of cracks,the higher the oil production,while the growth rate of cumulative oil production greatly decreased.When the number of fractures exceeded 50 and the growth rate decreased to less than 1%,increasing the number of fractures had little contribution to the increase in oil production.Through the prediction analysis of actual shale gas wells,the relative prediction error of the LSTM neural network based Shale gas productivity prediction model was only 2.332%.The two main factors that had the greatest impact on shale oil well productivity are the reconstruction volume and fracture parameters.

关 键 词:页岩油 水平井体积压裂 开发技术 

分 类 号:TE243.1[石油与天然气工程—油气井工程] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象