检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haitao Min Xiaoyong Xiong Pengyu Wang Zhaopu Zhang
机构地区:[1]State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130012,China
出 处:《Automotive Innovation》2024年第1期71-81,共11页汽车创新工程(英文)
基 金:supported by the Jilin Province Science and Technology Development Program(20210301023GX).
摘 要:Trajectory prediction is an essential component in autonomous driving systems,as it can forecast the future movements of surrounding vehicles,thereby enhancing the decision-making and planning capabilities of autonomous driving systems.Traditional models relying on constant acceleration and constant velocity often experience a reduction in prediction accu-racy as the forecasted timeframe extends.This limitation makes it challenging to meet the demands for medium to long-term trajectory prediction.Conversely,data-driven models,particularly those based on Long Short-Term Memory(LSTM)neural networks,have demonstrated superior performance in medium to long-term trajectory prediction.Therefore,this study introduces a hierarchical LSTM-based method for vehicle trajectory prediction.Considering the difficulty of using a single LSTM model to predict trajectories for all driving intentions,the trajectory prediction task is decomposed into three sequential steps:driving intention prediction,lane change time prediction,and trajectory prediction.Furthermore,given that the driving intent and trajectory of a vehicle are always subject to the influence of the surrounding traffic flow,the predictive model proposed in this paper incorporates the interactional information of neighboring vehicle movements into the model input.The proposed method is trained and validated on the real vehicle trajectory dataset Next Generation Simulation.The results show that the proposed hierarchical LSTM method has a lower prediction error compared to the integral LSTM model.
关 键 词:Autonomous vehicles Trajectory prediction Long Short-Term Memory Driving intention prediction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90