检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoqiang Sun Kuankuan Liu Long Chen Yingfeng Cai Hai Wang
机构地区:[1]Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China [2]School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
出 处:《Automotive Innovation》2024年第1期121-137,共17页汽车创新工程(英文)
基 金:National Natural Science Foundation of China,U20A20331,Long Chen.
摘 要:Traffic sign detection is a crucial task for autonomous driving systems.However,the performance of deep learning-based algorithms for traffic sign detection is highly affected by the illumination conditions of scenarios.While existing algo-rithms demonstrate high accuracy in well-lit environments,they suffer from low accuracy in low-light scenarios.This paper proposes an end-to-end framework,LLTH-YOLOv5,specifically tailored for traffic sign detection in low-light scenarios,which enhances the input images to improve the detection performance.The proposed framework comproses two stages:the low-light enhancement stage and the object detection stage.In the low-light enhancement stage,a lightweight low-light enhancement network is designed,which uses multiple non-reference loss functions for parameter learning,and enhances the image by pixel-level adjustment of the input image with high-order curves.In the object detection stage,BIFPN is introduced to replace the PANet of YOLOv5,while designing a transformer-based detection head to improve the accuracy of small target detection.Moreover,GhostDarkNet53 is utilized based on Ghost module to replace the backbone network of YOLOv5,thereby improving the real-time performance of the model.The experimental results show that the proposed method significantly improves the accuracy of traffic sign detection in low-light scenarios,while satisfying the real-time requirements of autonomous driving.
关 键 词:Deep learning Traffic sign detection Low-light enhancement YOLOv5 Object detection
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7