A multi-agent deep reinforcement learning approach for solving the multi-depot vehicle routing problem  

在线阅读下载全文

作  者:Ali Arishi Krishna Krishnan 

机构地区:[1]Department of Industrial Engineering,King Khalid University,Abha,Saudi Arabia [2]Department of Industrial,Systems,and Manufacturing Engineering,Wichita State University,Wichita,KS,USA

出  处:《Journal of Management Analytics》2023年第3期493-515,共23页管理分析学报(英文)

摘  要:The multi-depot vehicle routing problem(MDVRP)is one of the most essential and useful variants of the traditional vehicle routing problem(VRP)in supply chain management(SCM)and logistics studies.Many supply chains(SC)choose the joint distribution of multiple depots to cut transportation costs and delivery times.However,the ability to deliver quality and fast solutions for MDVRP remains a challenging task.Traditional optimization approaches in operation research(OR)may not be practical to solve MDVRP in real-time.With the latest developments in artificial intelligence(AI),it becomes feasible to apply deep reinforcement learning(DRL)for solving combinatorial routing problems.This paper proposes a new multi-agent deep reinforcement learning(MADRL)model to solve MDVRP.Extensive experiments are conducted to evaluate the performance of the proposed approach.Results show that the developed MADRL model can rapidly capture relative information embedded in graphs and effectively produce quality solutions in real-time.

关 键 词:artificial intelligence supply chain management combinatorial optimization multi-depot vehicle routing problem multi-agent deep reinforcement learning 

分 类 号:C93[经济管理—管理学] TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象